
Journal of Economics and Econometrics Vol. 56, No.2, 2013 pp. 54-77 

ISSN 2032-9652               E-ISSN 2032-9660 

 

Threshold Cointegration: Model 

Selection with an Application 
 

PETER SEPHTON, JANELLE MANN†1 

 
ABSTRACT 

 

In this article we examine the performance of an extended approach to 

testing for threshold cointegration that relies on the threshold 

specification process suggested by Gonzalo and Pitarakis (2002) and 

the block-bootstrap threshold unit root test of Seo (2008).  A topical 

application demonstrates its merits. 

 

 

JEL Classification: C23, F35, O23, O55. 

Keywords: Threshold cointegration; block bootstrapping; model 

selection criteria. 

                                                 
†Corresponding author: Peter Sephton, Queen’s University, School of Business, 

Kingston, ON  K7L 3N6, Canada. E-mail: psephton@business.queensu.ca. Janelle 

Mann, Assistant Professor, University of Manitoba, Department of Economics, 

Winnipeg, MB   R3T 2N2, Canada. E-mail: janelle.mann@ad.umanitoba.ca.  



Peter Sephton and Janelle Mann  55 

1 INTRODUCTION 

There is a large literature on nonlinear and asymmetric adjustment in 

long-run economic relationships (see Li and Lee (2010) for recent 

examples). One particularly fruitful area of research involves the 

concept of threshold cointegration, in which departures from long-run 

equilibrium can persist as long as certain conditions are satisfied. 

These types of models can help explain, for example, conflicting 

evidence on the law of one price in spatial arbitrage relationships 

(Myers and Jayne (2011), Sephton (2011a) and in fundamental 

macroeconomic relationships such as purchasing power parity (Nam 

(2011)), exchange rate pass-through (Larue et al (2010)) and the twin-

deficits (Holmes (2011)); the apparent lack of a link between wholesale 

and retail prices (Peri and Baldi (2010), Sephton (2011b)); and 

divergent views on whether short-term and long-term interest rates are 

related through the term structure (Clements and Galvao (2003), 

Krishnakurmar and Neto (2012)). 

The traditional approach (Enders and Siklos (2001)) to testing for 

threshold cointegration requires a multi-step process that searches for 

the number of thresholds, their location, and some method for testing 

the null hypothesis of non-cointegration through the use of Engle and 

Granger (1987) type tests to determine whether the residuals from a 

cointegrating regression contain a unit root. Since the thresholds are 

not identified under the null, the solution to the Davies (1987) problem 

usually involves a sup-Wald test of the restrictions in the testing 

equation. Alternatively, one could proceed along the lines of Li and Lee 

(2010) and use a direct test of non-cointegration in the error correction 

equations, which themselves, depend on the estimated threshold and 

cointegrating regression parameters, following the so-called BDM 

approach (named after Banerjee, Dolado and Mestre (1998)). 

The purpose of this paper is to suggest an alternative guide to testing 

for threshold cointegration that endogenizes the search for the optimal 

number and value of the thresholds, the timing of the indicator 

variable, whilst bootstrapping the test statistics to ensure robust 

inference. This blends the work of Gonzalo and Pitarakis (2002), who 

argued that threshold selection could be viewed from a model-selection 

perspective, and Seo (2008), who developed a residual based block-

bootstrap test for unit roots in threshold models. We examine the 

performance of this approach and show that it performs well in 

practice. An empirical application demonstrates its merits. 
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In the next section we review the residual-based approach to testing 

for threshold cointegration and both the main findings of Gonzalo-

Pitarakis (2002) and Seo (2008). This is followed by evidence that 

indicates the procedure works very well on simulated data. The fourth 

section highlights the practical performance of the procedure. Final 

remarks follow. 

2 THRESHOLD COINTEGRATION 

Balke and Fomby (1997) introduced threshold cointegration as an 

attractor to which several series were drawn in the long-run, but when 

certain conditions were satisfied, there could be persistent departures 

from the equilibrium without any tendency for the system to return to 

a state of balance. These conditions were framed in terms of an 

equilibrium error that followed a threshold autoregression that was 

mean-reverting outside a certain range, and non-stationary within a 

certain range. This kind of model might be capable of explaining why 

arbitrage between markets only becomes profitable after price 

differences exceed the costs of transacting; why central banks might 

intervene in markets when prices exceed some threshold; or perhaps 

why the Federal Reserve recently attempted to “twist” the term 

structure of interest rates in attempt to stimulate aggregate demand, 

whilst maintaining some semblance of credibility vis a vis maintaining 

a relatively low and stable rate of inflation that would be consistent 

with robust economic growth. 

The Engle and Granger (1987) approach to testing for linear 

cointegration involves estimating a cointegrating regression on series 

that are integrated of the same order (usually I(1)), and examining the 

residuals to see if they are integrated of a lower order (usually, I(0)). If 

there is no stationary linear combination of the series then they are not 

cointegrated – at least not linearly cointegrated. (There is a large 

literature on non-linear cointegration, but that is outside the scope of 

the present analysis). The Engle-Granger test for non-cointegration 

examines the residuals from the cointegrating regression in equation 

(1) to see if 
t̂
 has a unit root. Under the null of a unit root, the series 

are not cointegrated. 

1 2t t t
Y X  (1) 

1 1t t t
 (2) 
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Enders and Siklos (2001) extended this approach to testing for a unit 

root, allowing the residuals to follow a threshold autoregression based 

on an indicator variable 
t
I  that takes on the value of 1 if certain 

conditions are met, and zero otherwise. 

1 1 2 1
(1 )

t t t t t t
I I  (3) 

Those “certain conditions” were framed in terms of the TAR or MTAR 

models in which the lagged residuals, or their first difference, was 

above or below a threshold, denoted by 
1  

according to (4) 

TAR      MTAR 

1 1 1 1 1 1 1 1

1       0       1       0

ˆ ˆ ˆ ˆ       
t t t t

t t t t

I I I I
 (4) 

A simple threshold value of zero might be considered, or one could be 

estimated by searching over a range of possible values using the 

methods of Chan (1984), in which the residuals were sorted and the 

top and bottom 15% are excluded from the search. Then, solving the 

Davies (1987) problem (in which the threshold is not identified under 

the null), a series of Wald tests could be undertaken, with the “optimal 

threshold” chosen as the sup-F test of the null of non-cointegration,

1 2
0 . 

Other approaches to testing for cointegration rely on direct estimation 

of the error correction model implied by the cointegrated system. 

Banerjee et al (1998) provide one example, and Li and Lee (2010) 

employ this approach to develop innovative tests for threshold 

cointegration. 

Our purpose here is to take a different approach to testing for 

threshold cointegration, one that will allow us to extend previous work 

in several directions. Close inspection of (4) indicates that the selection 

of the threshold indicator is based on the first lagged value of the 

residual in the cointegrating regression. Indeed, any stationary series 

could act as the variable driving the indicator, and it need not be 

limited to the first lagged value of the cointegrating regression residual. 

One might envisage thresholds based on the difference between two 

series rather than the lagged cointegrating regression residual (for 

example, Nam (2011) uses the real exchange rate, the difference 

between the logarithm of the nominal exchange rate and the logarithm 
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of the relative price level; Mann (2012) uses the difference between the 

tax-adjusted wholesale and retail prices of gasoline) or a situation in 

which retail prices are revised, but with a lag, when wholesale prices 

exceed some threshold (Sephton (2011b)); or when local prices in a 

small market respond, with delay, to changes in the world price, or the 

price in a dominant market (Sephton (2011a)). 

One might also allow for multiple thresholds – there is no reason, a 

priori, to consider a single threshold. Band-TAR adjustment models, 

for example, allow two thresholds so that behaviour above the upper 

threshold, or below the lower threshold, should guarantee a return to 

the long-run equilibrium. Between the two thresholds there may be no 

pressure on prices to adjust back to the attractor because arbitrage is 

not profitable within this range. Price behaviour, for example, might 

appear totally random within this middle range, only returning to a 

stationary path once taken above the upper bound or below the lower 

bound. In some cases
1
 the Band-TAR process is assumed to have two 

thresholds with opposite signs but the same absolute value, but there 

is no reason, a priori, to force this to be the case.  

Within the framework here, consider equations 5 and 6. We allow for 

up to two thresholds 
1 2
,  and indicator variables { }

t d
I z  denoted by 

t d
z , the dth lag of stationary variable 

t
z  

1 2t t t
Y X  (5)

 

1 1 1 2 1 2 1 3 2 1
{ } { } { }

t t d t t d t t d t t
I z I z I z  (6) 

Seo (2008) provided a test of the unit root hypothesis 
1 2 3

 

against the alternative of a stationary threshold process and 

demonstrated how residual based block bootstrapping can be used for 

inference.
2
 This test is very powerful relative to the usual unit root test 

applied in the Engle-Granger (1987) approach, so it offers a natural 

solution to testing the null of non-cointegration in (6). In Band-TAR 

models where the middle regime exhibits non-stationary behaviour, the 

stationarity of the model itself, depends on the coefficients on the outer 

                                                 
1 See Seo (2008) for an example. 
2 Seo (2008) examined a unit root test in the univariate context and suggested that his 
test can be applied to the residuals from a cointegration regression. “Threshold 
cointegration entails SETAR to the error-correction term, and thus the unit root test 
developed in this paper can be applied” (Seo (2008, p 1700). 
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regimes. Here we do not assume a symmetric Band-TAR specification, 

so that in the case of a stationary threshold process, the speeds of 

adjustment back to the attractor can differ depending on the nature of 

the disequilibrium.  

As with similar tests, there is an augmented version of the test that 

incorporates lagged changes in the residuals in an attempt to “whiten” 

the covariance matrix, leading to a testing equation of the form (7) 

1 1 1 2 1 2 1

3 2 1 1 1

{ } { }

     { } ...
t t d t t d t

t d t t p t p t

I z I z

I z  (7) 

where model selection criteria can be used to choose the appropriate 

lag length (the p term) in the augmented version of the test. The Wald 

test statistic (8) is the sup-Wald test statistic for fixed thresholds, 

. Seo (2008) examines a single threshold model that searches over 

the full range of the indicator series ,  where max
t d
z , but 

that approach will not accommodate multiple thresholds with a 

minimum number of observations within each regime. We restrict each 

threshold search to exclude the top and bottom 15% of observations 

within each range, and the number of observations within each regime 

to 10. Under the null hypothesis of a unit root Seo (2008) 

demonstrates the asymptotic distribution is well defined and depends 

on nuisance parameters, requiring bootstrapping for inference. Seo 

(2008) demonstrates that the residual based block bootstrap achieves 

consistency of the bootstrap, and his Monte Carlo simulations show 

this test to be much more powerful and better sized than the usual 

Augmented Dickey-Fuller test, even in relatively small samples. 

2

2

ˆ
sup 1

ˆ ( )n
W n  (8) 

Our approach involves allowing between zero and two thresholds, and 

applying the Seo (2008) procedure to test for non-cointegration. We 

then employ the Gonzalo and Pitarakis (2002) approach to choose 

among the various threshold models. Gonzalo and Pitarakis (2002) 

framed the problem in terms of a model selection choice, where they 

maximized a criterion function QT(m) involving m thresholds. They 

examined the log of the estimated residual variance in the no threshold 

case (denoted 2ˆ ) relative to the threshold case (denoted 2

1
ˆ ( ,..., )

m
), 

and subtracted a term involving the sample size (T), the number of 
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parameters (K) and a penalty 
t
, where the usual BIC criterion sets 

log
T

T . Other criteria considered include the AIC ( 2
T

) and the 

BIC2 ( 2 log
T

T ).
3
 

1

2

2,...,
1

ˆ
( ) max log

ˆ ( ,..., )m

T
T

m

Q m Km
T

 (9) 

Our approach is to use the sup-Wald test proposed by Seo (2008) to 

estimate models containing up to three thresholds and to test for 

threshold cointegration, and the model selection procedure (9) due to 

Gonzalo and Pitarakis (2002) to choose the appropriate threshold 

specification. It is a relatively trivial matter to endogenize the search 

for the appropriate lag of the indicator variable to allow for the 

possibility that adjustment is based on a lagged cointegrating 

regression residual (or some other stationary series) beyond the first 

lag, as in Gospodinov (2005). For a given lag of the indicator variable, 

we perform the Seo (2008) test, given the number of thresholds. This 

yields a matrix of Seo (2008) test values with a typical element given 

by the indicator lag and the number of thresholds. Optimization of (9) 

across the number of thresholds and the indicator lag yields the final 

specification. 

The next section provides strong support for this approach and is 

followed by several empirical applications that demonstrate the 

benefits to adopting this methodology. 

 

3 MONTE CARLO EVIDENCE 

Gonzalo and Pitarakis (2002) report their model selection approach 

provides relatively high correct decision frequencies (over 90 percent 

with 600 observations), with little tendency to under-segment, even in 

a three regime model.
4
 Here it is interesting to examine the correct 

                                                 
3 Gonzalo and Pitarakis (2002) proved the consistency of their approach within the 
context of stationary threshold models. We are not aware of a formal proof extending 
their results to the case of non-stationary threshold models under the null, but our 
simulation experiments should highlight any deficiencies in employing their approach.  
4 While Altissimo and Corradi (2002) suggest the penalty term associated with the 
AIC is too weak, we include it for comparison with the results reported by Gonzalo 
and Pitarakis (2002). 
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decision frequencies (the number of times the procedure chooses zero 

thresholds when there are zero in the data generating process; the 

number of times it chooses one threshold when there is one threshold 

in the data generating process, and so on) for a range of settings of the 

other parameters of the search process. Given a particular sample size, 

these other settings involve the size of the threshold; the maximum lag 

in the search of the indicator variable; the minimum number of 

observations within each regime; the parameters of the data generating 

process; whether or not we employ the augmented version of the test 

to “whiten” the covariance matrix; and how non-spherical errors (in 

this case, those following a GARCH process) affect the correct decision 

frequencies.  

In the context of threshold cointegration testing using the momentum 

threshold adjustment model, Cook (2007) demonstrated that the 

general-to-unity detrending approach of Elliot et al (1996) increases 

the power of unit root tests on the cointegrating regression residuals. 

Simulations here will also examine whether GLS detrending affects the 

correct decision frequencies and the power of the Seo (2008) test. 

3.1 Correct Decision Frequencies 

There are two interesting measures of the proportion of the time that 

the procedure correctly chooses the actual number of thresholds. The 

first is simply a measure of the correct decision frequency when there 

are zero, one, or two thresholds. These do not examine the correct 

frequency for our proposed methodology – they are simply a measure 

of the frequency that a given number of thresholds are found when 

there are that many in the data generating process (DGP). Table 1 

provides this information. In addition to the AIC, BIC and BIC2 

penalty terms used to select the number of thresholds by the 

procedure, we also include results from an approach that chooses the 

number of thresholds on the basis of maximizing the Seo Wald statistic 

(labeled MAXF). The correct decision frequencies are reported for two 

sample sizes, T=100 and T=250, using both the level of the series 

(denoted ES for Enders-Siklos) and the GLS-detrended series (denoted 

GLS), allowing both a constant and a constant and a trend in the 

cointegrating regression used to generate the residuals. The data 

generating process involved creating cumulative sums of normally 

distributed random variables (denoted r) or cumulative sums of a 

normally distributed random variable with strong GARCH effects (a 
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unit intercept, an ARCH coefficient equal to 0.3 and a GARCH 

coefficient equal to 0.6, denoted g).  

When there are no thresholds in the data generating process the BIC2 

has the highest correct decision frequency relative to all other metrics. 

This is true whether the sample size is small (T=100) or large 

(T=250). GLS detrending has little impact on the correct decision 

frequency in this case.  

In the case of a single threshold (set at zero) in the data generating 

process, the AIC and MAXF criteria appear to be equally capable of 

capturing the true number of thresholds, with GLS detrending 

generally leading to a higher correct decision frequency than when 

including deterministic components in the cointegrating regression. 

When two thresholds appear in the DGP (set at zero and five), the 

MAXF approach outperforms all others, again with what appears to be 

a minor gain to employing GLS detrending. 

Table 1 appears to suggest that the BIC2 criterion is best when there 

are no thresholds, whereas the AIC or MAXF are best when there is 

one threshold, and the MAXF is best when there are two thresholds. 

Unfortunately, in practice, one rarely knows a priori, the number of 

thresholds. To guide empirical practice, we require a more general 

analysis of the model selection procedure. To that end, Tables 2a and 

2b and Tables 3a and 3b provide correct decision frequencies 

associated with allowing the procedure to search for as many as three 

thresholds, when in fact the DGP had either one or two thresholds, 

respectively.  

Table 2a reports the small sample results. When there is one threshold, 

the BIC2, with its strong penalty term, underfits the truth whereas the 

MAXF overfits, as does the AIC. The BIC appears to outperform the 

other metrics in this case, even when there are strong GARCH effects 

in the DGP. These results do not appear to extend to the larger 

sample, with Table 2b suggesting that the BIC2 metric has the highest 

correct decision frequency when there is a single threshold. The BIC 

still performs relatively well, but appears to have a tendency to overfit, 

as do the AIC and MAXF. 

The practical guidance from Table 2 is that when there is a single 

threshold, on a small sample, one might want to employ the BIC to 

select the number of thresholds, whereas on a larger sample, the 

stronger penalty of the BIC2 might be preferred. 
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When there are two thresholds in the DGP, Table 3a suggests that the 

BIC and BIC2 underfit on small samples, whereas the MAXF overfits. 

The AIC appears best able to select the true number of thresholds. 

Table 3b indicates that these findings extend to a larger sample. The 

AIC appears to be the best decision criterion in this case. 

Tables 2 and 3 suggest that one might want to employ both the AIC 

and the BIC as threshold selection criteria when one expects one or 

two thresholds, since the correct decision frequencies of the procedure 

are relatively high. This is true independently of whether the 

cointegrating regression includes deterministic components or is based 

on GLS-detrended data, as well as whether or not there are strong 

GARCH effects. 

3.2 Test Size and Power 

Table 4 presents information on the size of the test for sample sizes of 

100 and 250, for both the AIC and BIC criteria when there are both a 

constant and a linear trend in the cointegrating regression. The BIC 

leads to sizes that are much closer to the nominal five percent level, 

even in small samples. In the case of a linear trend in the cointegrating 

regression, the AIC leads to a relatively oversized test, even in large 

samples. 

Tables 5 and 6 examine the power of the Seo (2008) test when there is 

a single threshold in the DGP, using the AIC and BIC for model 

selection. Power is examined for a variety of settings of the adjustment 

coefficients when the series are threshold cointegrated. Generally 

speaking, the stronger the adjustment in both series, the greater is the 

power of the test. When one series is weakly exogenous, the power of 

the test can be quite low (as low as 44%) in small samples, but in large 

samples, the power is substantially higher (rising to 93% under the 

same conditions). The stronger the adjustment in the endogenous 

series, even when the other series is weakly exogenous, the greater is 

the power of the test, with a seemingly minor dominance of the BIC 

criterion. 

In toto, these results suggest the use of either the AIC or the BIC as 

the model selection criterion and that GLS detrending does not appear 

to significantly affect correct decision frequency nor test power (Cook 

(2007) reported these power improvements for the MTAR specification 

but did not report results for the TAR specification). In practice, we 

recommend the use of both the AIC and BIC in order to compare test 
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results across potentially different specifications. Ideally, inference will 

be unaffected by the choice of model selection criterion. In that case, 

one might be relatively confident concluding the series are either 

threshold cointegrated or not. 

4 APPLICATION 

There have been many recent applications of threshold cointegration 

tests, but few rely on the Gonzalo and Pitarakis (2002) model selection 

approach. In agricultural economics, Myers and Jayne (2012) examined 

maize markets in South Africa and Zambia and demonstrated that 

government intervention reduced the transmission of prices across 

borders. Adachi and Liu (2011) examined thresholds in the relationship 

between fluid milk demand and advertising; Boetel et al (2007) 

examined thresholds in US hog production; and Sephton (2011) 

examined thresholds between black and white pepper prices in 

Sarawak. In recent macroeconomic applications, Holmes (2011) 

investigated the relationship between government budget deficits and 

trade deficits; Nam (2011) explored the merits to employing threshold 

cointegration when revisiting the PPP debate. Other recent 

applications include Esteve and Tamarit (2012) who examined non-

linear adjustment between CO2 and income in Spain, and Sephton 

(2011b, 2012), who reported little evidence of threshold cointegration 

between the prices of American processed cheddar cheese at the 

wholesale and retail levels, nor between measures of customer 

satisfaction and discretionary consumption expenditures in the United 

States, respectively. 

In Sephton and Mann (2013) we employed this procedure to provide 

support for non-linear cointegration and asymmetric adjustment 

betweeen per capita GDP and CO2 emissions in Spain. Here, to 

highlight the merits of employing our methodology, we focus on an 

empirical application related to Holmes (2011), who examined the twin 

deficits debate. 

4.1 The Twin Deficits Debate 

Bartolini and Lahiri (2006) suggest the twin deficits hypothesis 

appeared to explain the American experience of the 1980s and the first 

part of the 21st Century, but that it did not seem to capture the 

behaviour observed in the 1990s. This suggests that there may be an 

asymmetric link between the current account balance and the fiscal 
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balance. The twin deficits hypothesis suggests that a larger fiscal 

deficit, either through its affect on national saving (requiring greater 

borrowing from abroad, higher interest rates, currency appreciation, 

and capital inflows; the usual Mundell-Flemming effect) or domestic 

absorption (higher imports resulting from currency appreciation) will 

exacerbate the current account deficit. The causality is from the fiscal 

deficit to the current account deficit, that is, the current account 

deficit is a byproduct of expansionary fiscal policies. 

Holmes (2011) examined this relationship using the methods of Hansen 

and Seo (2002) and reported evidence in favour of a single threshold, 

but with causality in either direction, depending on the size of the 

disequilibrium error. The traditional causal link from the fiscal deficit 

to the current account deficit becomes operative only when the fiscal 

deficit becomes “too large”, corresponding roughly to the 1980-1984 and 

1990-1994 periods. 

Does our approach provide different results? Using data from the 

Bureau of Economic Analysis spanning 1947Q1 until 2011Q2 on the 

federal budget deficit and net foreign investment (both as a proportion 

of GDP), Table 7 presents the test results and the estimated error 

correction models. Both the AIC and BIC criteria choose identical 

specifications. We estimate the cointegrating regression including a 

constant and trend, and exclude deterministic components in the error 

correction equations. 

There are two thresholds identified in the relationship, as described in 

Figure 1, which also highlights dates of US recessions. In the lowest 

regime there are 70 observations, above that 131, above that 47 

months (the minimum number of observations was set at 15). The test 

of non-cointegration has a value of 24.69, and a bootstrap 5% critical 

value of 18.29 (the associated p-value is very small). This leads us to 

reject the null of non-cointegration in favour of the twin deficits being 

threshold cointegrated. 

Inspection of the coefficients in the testing equation provides support 

for a band-TAR specification. In the lowest regime there is tendency to 

return to equilibrium but it is relatively weak (at -0.066) when 

compared to the estimated speed of adjustment in the upper region (at 

-0.117). In the middle regime there is no pressure for the series to 

restore balance. From the estimated error correction equations, it is 

clear that the fiscal deficit is the series that is moving to restore 

balance while the current account deficit appears to be weakly 
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exogenous because it does not react to the disequilibrium in the 

relationship. This result is at odds with that reported by Holmes 

(2011), and provides support in favour of the traditonal mechanism 

describing the twin deficits hypothesis. Fiscal policies react to move 

the system back to the attractor. 

Figure 1 also helps explain conflicting reports of whether the series 

were cointegrated over the last sixty years. The duration of periods 

when the disequilibrium was above the highest threshold was relatively 

short (51 quarters in total), consistent with the relatively fast 

adjustment back to equilibrium, given the estimated error correction 

equations. When adjustment was relatively slow, the disequilibria 

appear to be longer-lived (72 quarters in total). Periods during which 

there appeared to be no tendency to return to equilibrium span from 

1961 until 1975, in the late 1970s, from 1983-1985, between 1989-1992, 

1993-2003 (consistent with Bartolini and Lahiri (2006)), and 2009 until 

2012. Most likely as a result of unprecedented fiscal expansion related 

to the latest period of creative destruction, since 2009, the link 

between the fiscal and current account deficits has diverged from the 

long-run equilibrium, without tendancy to return to the long-run 

attractor.  

These findings indicate there are benefits to adopting the joint 

methodology of Gonzalo and Pitarakis (2002) and Seo (2008), as they 

provide a much richer understanding of the twin deficits debate. 

5 CONCLUSIONS 

This article provides a novel approach to testing for threshold 

cointegration by selecting the number of thresholds following the 

model selection approach advocated by Gonzalo and Pitarakis (2002) 

and employing the threshold unit root test of Seo (2008). Monte Carlo 

evidence suggests the approach fares very well vis a vis selecting the 

number of thresholds and testing the null of non-cointegration, even 

when the data contains strong GARCH effects. While previous work 

(Cook (2007)) suggested GLS detrending has the potential to increase 

test power, it did not appear to provide significant gains in power 

within the framework of the usual TAR specification. An empirical 

application demonstrated the merits of our approach and led to 

somewhat different findings than those reported in previous work. 
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Extensions of the procedures to the momentum threshold model 

(MTAR) where cointegration thresholds are determined by the change 

in the deviation from the long-run attracter, and a wider variety of 

data generating processes under both the null and the alternative 

hypotheses, is the subject of ongoing work. 
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Table 1: Correct Frequency Percentages 

  AIC BIC BIC2 MAX F 

T=100              

  0 1 2 0 1 2 0 1 2 0 1 2 

ES Constant r 0.11 0.96 0.87 0.48 0.82 0.36 0.89 0.50 0.02 0.06 0.97 1.00 

 g 0.06 0.97 0.84 0.36 0.85 0.37 0.78 0.52 0.04 0.07 0.98 1.00 

ES Constant Trend r 0.12 0.92 0.86 0.48 0.69 0.38 0.87 0.30 0.02 0.09 0.96 1.00 

 g 0.08 0.93 0.81 0.42 0.76 0.29 0.82 0.37 0.02 0.09 0.95 0.98 

GLS Constant r 0.05 1.00 0.87 0.41 0.91 0.45 0.82 0.74 0.04 0.01 0.99 1.00 

 g 0.03 0.99 0.81 0.26 0.94 0.41 0.70 0.76 0.02 0.01 0.99 1.00 

GLS Constant Trend r 0.12 0.94 0.86 0.48 0.79 0.33 0.87 0.36 0.03 0.03 0.96 1.00 

 g 0.08 0.95 0.81 0.43 0.83 0.31 0.82 0.45 0.02 0.03 0.98 0.99 

T=250      

  0 1 2 0 1 2 0 1 2 0 1 2 

ES Constant r 0.16 1.00 0.97 0.59 0.98 0.33 0.95 0.91 0.01 0.04 1.00 1.00 

 g 0.07 1.00 0.87 0.41 0.97 0.29 0.78 0.82 0.00 0.03 1.00 1.00 

ES Constant Trend r 0.17 1.00 0.98 0.65 0.98 0.32 0.94 0.79 0.01 0.06 1.00 1.00 

 g 0.07 1.00 0.89 0.43 0.96 0.30 0.76 0.68 0.01 0.06 0.97 1.00 

GLS Constant r 0.07 1.00 0.98 0.50 1.00 0.46 0.89 0.96 0.03 0.00 1.00 1.00 

 g 0.06 1.00 0.85 0.35 0.99 0.27 0.70 0.95 0.02 0.00 1.00 1.00 

GLS Constant Trend r 0.15 1.00 0.95 0.62 0.96 0.34 0.94 0.84 0.01 0.01 1.00 1.00 

 g 0.07 1.00 0.89 0.39 0.97 0.28 0.76 0.79 0.03 0.01 1.00 1.00 

Notes: Table entries are the proportion of times the model selection criterion chooses 
the correct number of thresholds for the zero, one, and two threshold cases. Es denotes 
the usual Enders Siklos test whereas GLS denotes the tests applied to GLS detrended 
data. The DGP were based on normally distributed random numbers (r) or those 
containing GARCH (with ARCH coefficient 0.3 and GARCH coefficient 0.6). 
Simulations were based on ngrid=50, nboot=200, and 200 replications. Speed of 
adjustment coefficients in the single threshold case (set at 0) were Y [-.05 -.8] and X 
[.05 .6] and in the two threshold case where thresholds were set at 0 and +5 were Y [ -
.05 -.25 -.8] and X [.1 .3 .8].  



Peter Sephton and Janelle Mann  71 

Table 2a: Threshold Selection Frequencies, Single Threshold 

 Zero One Two Three 

T=100 Random Garch Random Garch Random Garch Random Garch 

AIC         

ES Constant 0.010 0.010 0.185 0.265 0.715 0.670 0.090 0.055 

ES Constant Trend 0.020 0.040 0.160 0.225 0.800 0.695 0.020 0.040 

GLS Constant 0.000 0.005 0.260 0.240 0.725 0.720 0.015 0.035 

GLS Constant Trend 0.015 0.020 0.190 0.250 0.775 0.710 0.020 0.020 

BIC         

ES Constant 0.115 0.135 0.540 0.610 0.340 0.240 0.005 0.015 

ES Constant Trend 0.230 0.210 0.420 0.525 0.350 0.265 0.000 0.000 

GLS Constant 0.045 0.065 0.635 0.640 0.315 0.295 0.005 0.000 

GLS Constant Trend 0.175 0.190 0.440 0.525 0.385 0.285 0.000 0.000 

BIC2         

ES Constant 0.490 0.480 0.480 0.490 0.030 0.030 0.000 0.000 

ES Constant Trend 0.670 0.620 0.290 0.355 0.040 0.025 0.000 0.000 

GLS Constant 0.255 0.240 0.690 0.720 0.055 0.040 0.000 0.000 

GLS Constant Trend 0.590 0.535 0.360 0.415 0.050 0.050 0.000 0.000 

MAX F         

ES Constant 0.000 0.000 0.000 0.000 0.000 0.010 1.000 0.985 

ES Constant Trend 0.000 0.000 0.000 0.000 0.010 0.005 0.990 0.995 

GLS Constant 0.000 0.000 0.000 0.000 0.010 0.020 0.990 0.980 

GLS Constant Trend 0.000 0.000 0.000 0.000 0.015 0.005 0.985 0.995 

Notes: Table entries are correct decision frequencies for the procedure based on 
selecting the number of thresholds using each metric.  The single threshold value is set 
at zero and the adjustment coefficients are Y [-.05 -.8] and X [.05 .6]. The double 
threshold values are at 0 and +5 and the adjustment coefficients are Y [ -.05 -.25 -.8] 
and X [.1 .3 .8]. 
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Table2b: Threshold Selection Frequencies, Single Threshold 

 Zero One Two Three 

T=250 Random Garch Random Garch Random Garch Random Garch 

AIC         

ES Constant 0.000 0.000 0.130 0.180 0.655 0.675 0.215 0.145 

ES Constant Trend 0.000 0.000 0.155 0.165 0.680 0.720 0.165 0.115 

GLS Constant 0.000 0.000 0.145 0.210 0.800 0.720 0.055 0.070 

GLS Constant Trend 0.000 0.000 0.125 0.145 0.775 0.760 0.100 0.095 

BIC         

ES Constant 0.015 0.040 0.610 0.705 0.345 0.240 0.030 0.015 

ES Constant Trend 0.030 0.040 0.710 0.690 0.245 0.270 0.015 0.000 

GLS Constant 0.005 0.010 0.740 0.755 0.250 0.235 0.005 0.000 

GLS Constant Trend 0.035 0.030 0.705 0.745 0.250 0.225 0.010 0.000 

BIC2         

ES Constant 0.100 0.185 0.855 0.785 0.045 0.045 0.000 0.000 

ES Constant Trend 0.200 0.345 0.780 0.655 0.020 0.020 0.000 0.000 

GLS Constant 0.045 0.060 0.935 0.915 0.020 0.025 0.000 0.000 

GLS Constant Trend 0.160 0.210 0.815 0.775 0.025 0.025 0.000 0.000 

MAX F         

ES Constant 0.000 0.000 0.000 0.000 0.000 0.005 1.000 0.995 

ES Constant Trend 0.000 0.000 0.000 0.000 0.010 0.010 0.990 0.990 

GLS Constant 0.000 0.000 0.000 0.000 0.010 0.015 0.990 0.985 

GLS Constant Trend 0.000 0.000 0.000 0.000 0.005 0.005 0.995 0.995 

Notes: Table entries are correct decision frequencies for the procedure based on 
selecting the number of thresholds using each metric.  The single threshold value is set 
at zero and the adjustment coefficients are Y [-.05 -.8] and X [.05 .6]. The double 
threshold values are at 0 and +5 and the adjustment coefficients are Y [ -.05 -.25 -.8] 
and X [.1 .3 .8]. 
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Table 3a: Threshold Selection Frequencies, Two Thresholds 

 Zero One Two Three 

T=100 Random Garch Random Garch Random Garch Random Garch 

AIC         

ES Constant 0.040 0.045 0.080 0.125 0.875 0.820 0.005 0.010 

ES Constant Trend 0.070 0.030 0.090 0.125 0.835 0.835 0.005 0.010 

GLS Constant 0.030 0.020 0.085 0.170 0.880 0.800 0.005 0.010 

GLS Constant Trend 0.035 0.015 0.105 0.175 0.855 0.805 0.005 0.005 

BIC         

ES Constant 0.405 0.255 0.240 0.370 0.355 0.375 0.000 0.000 

ES Constant Trend 0.365 0.265 0.280 0.420 0.355 0.315 0.000 0.000 

GLS Constant 0.310 0.195 0.215 0.400 0.475 0.405 0.000 0.000 

GLS Constant Trend 0.365 0.280 0.320 0.410 0.315 0.310 0.000 0.000 

BIC2         

ES Constant 0.870 0.750 0.105 0.220 0.025 0.030 0.000 0.000 

ES Constant Trend 0.850 0.765 0.125 0.215 0.025 0.020 0.000 0.000 

GLS Constant 0.830 0.640 0.135 0.300 0.035 0.040 0.000 0.000 

GLS Constant Trend 0.845 0.695 0.105 0.290 0.050 0.015 0.000 0.000 

MAX F         

ES Constant 0.000 0.000 0.000 0.000 0.000 0.010 1.000 0.985 

ES Constant Trend 0.000 0.000 0.000 0.000 0.010 0.005 0.990 0.995 

GLS Constant 0.000 0.000 0.000 0.000 0.010 0.015 0.990 0.980 

GLS Constant Trend 0.000 0.000 0.000 0.000 0.020 0.005 0.985 0.995 

Notes: See Table 2. 
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Table 3b: Threshold Selection Frequencies, Two Thresholds 

 Zero One Two Three 

T=250 Random Garch Random Garch Random Garch Random Garch 

AIC         

ES Constant 0.010 0.005 0.050 0.125 0.930 0.835 0.010 0.035 

ES Constant Trend 0.005 0.010 0.030 0.100 0.955 0.890 0.010 0.000 

GLS Constant 0.015 0.000 0.025 0.160 0.925 0.805 0.035 0.035 

GLS Constant Trend 0.000 0.005 0.035 0.110 0.945 0.865 0.020 0.020 

BIC         

ES Constant 0.385 0.145 0.310 0.555 0.305 0.300 0.000 0.000 

ES Constant Trend 0.400 0.230 0.260 0.505 0.340 0.265 0.000 0.000 

GLS Constant 0.285 0.095 0.285 0.635 0.430 0.270 0.000 0.000 

GLS Constant Trend 0.350 0.155 0.305 0.555 0.345 0.290 0.000 0.000 

BIC2         

ES Constant 0.855 0.575 0.135 0.420 0.010 0.005 0.000 0.000 

ES Constant Trend 0.910 0.705 0.090 0.290 0.000 0.005 0.000 0.000 

GLS Constant 0.800 0.500 0.175 0.490 0.025 0.010 0.000 0.000 

GLS Constant Trend 0.855 0.560 0.130 0.425 0.015 0.015 0.000 0.000 

MAX F         

ES Constant 0.000 0.000 0.000 0.000 0.000 0.005 1.000 0.995 

ES Constant Trend 0.000 0.000 0.000 0.000 0.010 0.010 0.990 0.990 

GLS Constant 0.000 0.000 0.000 0.000 0.010 0.015 0.990 0.985 

GLS Constant Trend 0.000 0.000 0.000 0.000 0.005 0.005 0.995 0.995 

Notes: See Table 2. 

 

Table 4:  Test Size T = 100 and T = 250 

 AIC   BIC 

T =100     

Constant 0.045   0.055 

Trend 0.185   0.065 

T =250     

Constant 0.070   0.065 

Trend 0.170   0.085 

Size at 5 percent level of significance for cumulative sums of normally distributed 
random variables under the null of non cointegration for sample sizes T = 100 and T 
= 250 using a block length of b = 6.  
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Table 5: Power at 5%, Single Threshold, Test with Constant 

    AIC BIC 

   ES GLS ES GLS 

Y Adjustment X Adjustment r g r g r g r g 

T=100            

-0.050 -0.030 0.000 0.000 0.440 0.490 0.450 0.470 0.480 0.500 0.450 0.510 

-0.050 -0.030 0.000 0.500 0.670 0.610 0.510 0.510 0.710 0.660 0.610 0.560 

-0.050 -0.030 0.000 0.900 0.710 0.680 0.540 0.560 0.800 0.790 0.690 0.670 

-0.050 -0.030 0.200 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.050 -0.030 0.200 0.500 0.990 0.950 0.990 0.960 0.990 0.980 0.990 0.990 

-0.050 -0.030 0.200 0.900 0.980 0.940 0.950 0.950 0.990 0.940 0.970 0.960 

-0.050 -0.800 0.000 0.000 0.590 0.700 0.550 0.660 0.730 0.590 0.670 0.620 

-0.050 -0.800 0.000 0.500 0.720 0.720 0.520 0.670 0.790 0.760 0.640 0.700 

-0.050 -0.800 0.000 0.900 0.740 0.690 0.530 0.520 0.820 0.760 0.710 0.640 

-0.050 -0.800 0.200 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.050 -0.800 0.200 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 

-0.050 -0.800 0.200 0.900 1.000 1.000 0.990 1.000 1.000 1.000 1.000 1.000 

T=250       

-0.050 -0.030 0.000 0.000 0.930 0.900 0.840 0.850 0.860 0.940 0.880 0.900 

-0.050 -0.030 0.000 0.500 0.990 0.940 0.930 0.920 0.990 0.980 0.910 0.940 

-0.050 -0.030 0.000 0.900 0.990 1.000 0.920 0.950 1.000 0.980 0.980 0.960 

-0.050 -0.030 0.200 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.050 -0.030 0.200 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.050 -0.030 0.200 0.900 1.000 1.000 1.000 0.995 1.000 1.000 1.000 1.000 

-0.050 -0.800 0.000 0.000 0.980 0.950 0.890 0.900 0.990 0.950 0.960 0.910 

-0.050 -0.800 0.000 0.500 1.000 0.970 0.920 0.870 0.990 0.990 0.940 0.920 

-0.050 -0.800 0.000 0.900 0.990 1.000 0.930 0.940 1.000 0.990 0.940 0.960 

-0.050 -0.800 0.200 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.050 -0.800 0.200 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.050 -0.800 0.200 0.900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Notes: Entries are power at five percent for the test allowing for a constant in the 
cointegrating regression (Table 5) or constant and trend (Table 6) assuming the 
threshold is set at zero with speed of adjustment coefficients in Y and X as labeled.  
Simulations based on ngrid=50, nboot=200 and 200 replications. ES denotes the usual 
Enders Siklos test whereas GLS denotes the tests applied to GLS detrended data. The 
DGP were based on integrated sums of normally distributed random numbers (r) or 
those containing GARCH (with arch coefficient 0.3 and garch coefficient 0.6). 
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Table 6: Power at 5%, Single Threshold, Test with Constant and Trend 

    AIC BIC 

    ES GLS ES GLS 

Y Adjustment X Adjustment r g r g r g r g 

T=100            

-0.050 -0.030 0.000 0.000 0.460 0.490 0.440 0.450 0.440 0.560 0.380 0.530 

-0.050 -0.030 0.000 0.500 0.520 0.540 0.420 0.480 0.550 0.540 0.550 0.460 

-0.050 -0.030 0.000 0.900 0.570 0.550 0.420 0.420 0.640 0.650 0.510 0.600 

-0.050 -0.030 0.200 0.000 0.990 0.940 0.990 0.970 1.000 0.960 0.990 0.970 

-0.050 -0.030 0.200 0.500 0.990 0.970 0.960 0.950 0.990 0.960 0.970 0.940 

-0.050 -0.030 0.200 0.900 0.980 0.950 0.930 0.920 0.980 0.950 0.940 0.940 

-0.050 -0.800 0.000 0.000 0.630 0.690 0.470 0.610 0.750 0.670 1.000 0.600 

-0.050 -0.800 0.000 0.500 0.660 0.640 0.520 0.560 0.710 0.630 0.580 0.540 

-0.050 -0.800 0.000 0.900 0.640 0.620 0.460 0.490 0.730 0.650 0.600 0.540 

-0.050 -0.800 0.200 0.000 1.000 1.000 0.990 0.990 1.000 1.000 1.000 1.000 

-0.050 -0.800 0.200 0.500 0.990 0.980 1.000 0.990 1.000 0.980 1.000 0.970 

-0.050 -0.800 0.200 0.900 0.990 0.960 0.960 0.940 0.990 0.940 0.950 0.960 

T=250      

-0.050 -0.030 0.000 0.000 0.890 0.900 0.860 0.870 0.870 0.930 0.840 0.890 

-0.050 -0.030 0.000 0.500 0.920 0.890 0.800 0.820 0.920 0.890 0.830 0.780 

-0.050 -0.030 0.000 0.900 0.910 0.920 0.780 0.830 0.950 0.880 0.780 0.790 

-0.050 -0.030 0.200 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.050 -0.030 0.200 0.500 1.000 0.990 1.000 0.990 1.000 1.000 0.995 1.000 

-0.050 -0.030 0.200 0.900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 

-0.050 -0.800 0.000 0.000 0.970 0.930 0.930 0.890 0.990 0.950 0.980 0.890 

-0.050 -0.800 0.000 0.500 0.960 0.880 0.870 0.810 0.990 0.920 0.950 0.830 

-0.050 -0.800 0.000 0.900 0.960 0.940 0.850 0.850 0.970 0.920 0.930 0.850 

-0.050 -0.800 0.200 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.050 -0.800 0.200 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.050 -0.800 0.200 0.900 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000 

Notes: Entries are power at five percent for the test allowing for a constant in the 
cointegrating regression (Table 5) or constant and trend (Table 6) assuming the 
threshold is set at zero with speed of adjustment coefficients in Y and X as labeled.  
Simulations based on ngrid=50, nboot=200 and 200 replications. ES denotes the usual 
Enders Siklos test whereas GLS denotes the tests applied to GLS detrended data. The 
DGP were based on integrated sums of normally distributed random numbers (r) or 
those containing GARCH (with arch coefficient 0.3 and garch coefficient 0.6). 
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Table 7: Twin Deficits Results 

 Test Equation Fiscal Deficit Current Account Deficit 

Threshold Indicator Lag 2   

Number of Thresholds 2   

Test Statistic 24.69   

P-Value 0   

Adjustment Coefficients    

Above Highest -0.1169   -0.1332  0.0015 

t statistic  -3.5206   -6.3974  0.0177 

Middle 0.1039    0.0920 0.0674 

Below Lowest   -0.0660   -0.0526   0.0195 

t statistic   -2.4892   -1.6554   0.3299 

Notes: Data on the U.S. federal fiscal and current account deficits, as a fraction of 
GDP was obtain from the Bureau of Economic Analysis database, spanning 1947Q1 to 
2011Q2. A constant and trend were included in the cointegrating regression. The test 
statistic involved 300 bootstrap replications with a blocksize of 6 and a maximum lag 
length in the test equation and in the error correction models set at 4. The top and 
bottom 15% of the sample was excluded from the threshold search using a grid span of 
100 with a minimum number of observations within a regime set at 15. Adjustment 
coefficients are the estimated coefficients in the testing equation or the error correction 
models, as noted, with t-statistics denoted by t. The maximum lag for the threshold 
indicator was set at 2. 

 


