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ABSTRACT 

 

A Smoothing Test under First-Order Autoregressive Processes 

and First Order Moving Average Correction 

 

 

This note focuses on two applications of time series methods. The first proposes a 

simple transformation of the unit root form of stationary testing to infer about the validity of 

smoothing by second-order running averages of a series, or of the variables in a linear 

model (here opposing co-integration testing). 

The second one advances a simple iterative algorithm to correct for MA(1) 

autocorrelation of the residuals of the general linear model, not requiring the estimation of 

the error process parameter. 

 

JEL Classification: C22, C12, C13. 

Keywords: Smoothing Tests under First Order Autoregressive Processes, Running 

Averages, Negative Unit Roots. Moving Average Autocorrelation Correction in Linear 

Models. 
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A Smoothing Test under First-Order Autoregressive Processes 

and First Order Moving Average Correction 

 

 

 

1. A Smoothing Test under First-Order Autoregressive Processes 

 

In standard econometric as time series – undergraduate as graduate – textbooks 1 

the autoregressive process of the first order is a generally covered topic and an important 

role is given to its correction under GLS approximations to the parameter estimators of the 

linear model, Yt = Xt  + t, t = 1,2,…,T. Co-integration 2 tests are usually forwarded with 

reference to the unit value of the AR(1) process parameter, t =  t-1 + vt (vt with null 

mean, constant variance and uncorrelated in time), and it is immediate to recognize that 

under the null (H0:  = 1) the generalized differences form of the regression corresponds to 

a model estimated in first differences of all the variables involved (without a constant term) 

3 (even if, as is well known, non-cointegration may be a symptom of more serious model 

specification problems, namely spurious regression).  

It is noteworthy, however, that the null H0:  = -1 may also be important. On the 

one hand, negative values for the first autoregressive coefficient also occur – in these cases, 

high negative, rather than positive, autocorrelation is more likely to endanger the 

stationarity assumption of the error term. On the other, under the null, the transformed 

variables can be seen to assume equivalent format to smoothed series by simple running 

averages (or moving averages, here the smoothing procedure 4) of order 2.  

The test of H0:  = -1 against H1:  > -1 can be easily preformed with standard co-

integration statistics by means of the use of simple modifications of the error-terms 

regressions: for H0:  = 1 (analogously to unit root testing), the test-statistic is based on the 

t-ratio associated to the coefficient of et-1, the lagged OLS residual of the co-integration 

relation, in either the regressions:  

                                           

1 Greene (2003), Gujarati (2003), Griffith et al (1993), Johnston and Dinardo. (1997), for 

example. 

2 See Dolado et al (2001) for a recent overview. 

3 Berenblutt-Webb test confronts also the two models – in levels and in first differences. See 

Gujarati (2003), p. 480-481. 

4 See Mills (1990), for example, for definitions. 
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et  =  ( -1) et-1 + t   H0:  = 1   (H1:  < 1, Co-integration)       or 

et  =    + ( -1) et-1 + t    H0:  = 1   (H1:  < 1, Co-integration)   

   t = 2,3,...,T 

 

where et = et - et-1. We can generate the following reasoning for a “smoothed 

regression” test of H0:  = -1 against H1:  > -1: if t  =   t-1  +  vt, then: 

 

  t  =  -   (- t-1)  +  vt =  ’ (- t-1)  +  vt 

 

where ’ = -. Subtracting (- t-1) from both sides of the equation, and applying the 

principle to OLS residuals, we can write: 

 

(1)  et  +  et-1  =  (’ -1) (- et-1)  +  vt 

 

Denote the series et + et-1 = et, t = 2,3,...,T. Then, the t-ratio associated to the 

(only) coefficient of the regression of et on (- et-1) – or the symmetric of the t-ratio of the 

coefficient of the regression of et on et-1 – can immediately be used as in the standard co-

integration test to evaluate the H0: ’ = 1 (i.e.,  = -1) against H1: ’ < 1 ( > -1) 5. 

One can also confirm that the estimated coefficient of (- et-1) – estimating (’ –1) - 

and corresponding t-ratio in regression (1) are numerically identical to the ones obtained if 

one replaces the original series et by another, e’t, the values of which are those of et, say, for 

odd observations, and the symmetric of et for even ones in such a way that: 

 

 e’t  =  - (- 1)
t
 et    ,    t = 1,2,...,T 

 

(or vice-versa: e’t = (- 1)
t
 et,  t = 1,2,...,T) - i.e., denoting by e’ the vector with e’t, 

and by e the vector containing the original residuals: 

 

                                           

5 Yet, that common co-integration tables such as those produced by Engle and Yoo (1987) are 

identically applicable is not proven here. 
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- and considers the coefficient of e’t-1 from the standard co-integration regression 

of the errors, i.e., from 

 

 e’t = (’ -1) e’t-1 + vt   H0: ’ = 1   (H1: ’ < 1)  

 

where e’t = e’t - e’t-1. The last procedure – the inspection of the series e’t - could 

be seen as stemming from Fuller’s (1996) proof of Corollary 10.1.1.1., p. 554, with regard 

to unit root inspection. The equivalence of the two methods will not hold if we include a 

constant in the error-term regressions. 

Finally, we note that for an AR(1) process: 

 

 t =  t-1 + vt = 2
 t-2  +  vt +  vt-1 

 

and co-integration arrangement yields an equation of the form (t - t-2) = (2 - 1) 

t-2 + vt +  vt-1. (2 - 1) can, thus, be inferred consistently from the regression of (t - t-2) 

on t-2, eventually more efficiently from a procedure entailing an MA(1) correction of the 

error term (as the one described below); tests of H0: 2 = 1, accommodate both non-

cointegrated as smoothing cases, the latter applicable when negative sample first-order 

autocorrelation of the et’s is encountered. 

The procedure(s) may easily encompass error correction mechanisms. They are 

also extendeable to the stationarity inspection of univariate time series, with also reference 

to Dickey-Fuller (1979) statistics 6. Dickey and Fuller explicitly recognize a mirror effect 

on the relevant distribution for purposes of evaluating a null H0:  = -1 with the test 

statistic they derived; instead, we stress the artifact(s) that allows us to obtain the “mirror” 

statistic that goes with the original (that is, for testing H0:  = 1) distribution tails. If the 

null H0:  = -1 is not rejected, the input series should be previously smoothed by running 

                                           

6 See Bierens (2001) for a recent survey.  
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averages of the second order before applying, for example, an ARMA representation. The 

application of the procedure to the running average series of second order would justify 

averaging of averages: a fourth order running average. 

 

 

2. First Order Moving Average Correction 

 

Moving average – MA(q) - processes are also de-emphasised in most textbooks in 

serial correlation treatment. The fact can be justified by the non-existence of a straight-

forward correction procedure 7 (as generalized differences are for AR processes), 

generating interpretable transformed variables without requiring matrix manipulation or 

visualization, on the one hand, and on the other, the fact that an MA error term has, in fact, 

indistinguishable status in linear regression relative to the MA part of ARIMA processes in 

univariate time series appraisal – MA inference can be done with OLS residuals inputted to 

ARIMA procedures. This justifies, for instance, the non-existence of similar routines to 

Prais-Winsten or Cochrane-Orcutt methods 8, that correct for AR(1) serial correlation to 

improve estimation properties of linear model estimators, for MA processes. Yet, the 

correction can be accommodated quite easily, and I illustrate with an MA(1) process. 

Let t = vt +  vt-1, where vt stands for the usual uncorrelated, null mean and 

constant variance (denoted by v
2) noise, invertibility requiring |  | < 1. As is well known, 

and denoting by  the (Tx1) vector of residuals ordered from 1 to T, the covariance matrix 

is of the form E[´] = V = 2 : 

 

 V  =  v
2  

2

2

2

2

2
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...
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 
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 
 
 
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  

 

 

It is straight-forward to see that V can also be written as: 

                                           

7 See an overview of previously proposed estimation procedures of MA(1) processes in 

Choudhury, Chaudhury and Power (1987), for example. 

8 As there are in packages such as TSP – see Hall and Cummins (1997) and (1998). 
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where j represents the j-th order autocorrelation of t, i.e., j = 
2

[ ]
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MA(1) process, 1 = 
21




 and j = 0 for j > 1. Then estimating 1 by the sample first 

order autocorrelation of the estimated residuals, et, call it r1, and 
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applying standard feasible GLS, i.e., obtaining: ^;
GLS

 = (X´ 
^; -1 X)-1 X´ 

^; -1 

Y, provides adequate correction. The procedure can be iterated as in the Cochrane-Orcutt 

method for AR(1) residuals, with stopping rule now associated to the absolute value of the 

difference between two consecutive estimates of r1 (each obtained from the errors et = Yt - 

Xt 
^;

GLS
, with ^;

GLS
 arising from the corresponding iterations). 

After convergence, inference can be made using the covariance matrix C^;ov(
^;

MQG
) = ^;2 (X´ 

^; -1 X)-1, with ^;2 having been calculated with the last iteration’s 

error terms as 
2

1

T
t

t

e

T k 
  - the residuals are homoscedastic -, with k representing the number 

of parameters in . 

As a final remark, we note that inference about  was unnecessary – forecasting 

was not the issue here. Yet, for the underlying inferred autocorrelation to arise from an 
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MA(1) process with real  and vt’s, | 1 | < 0.5 9 – which also insures invertibility – and the 

method should eventually also stop if a value for r1 out of that range is obtained. 

Obviously, the procedure is immediately generalizeable to MA processes of higher 

order 10. 
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