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Interdependencies between Mining Costs, Mining Rewards and Blockchain Security  

 

Abstract 

This paper studies to what extent the cost of operating a proof-of-work blockchain is 
intrinsically linked to the cost of preventing attacks, and to what extent the underlying digital 
ledger’s security budgets are correlated with the cryptocurrency market outcomes. We 
theoretically derive an equilibrium relationship between the cryptocurrency price, mining 
rewards and mining costs, and blockchain security outcomes. Using daily crypto market data 
for 2014–2021 and employing the autoregressive distributed lag approach – that allows treating 
all the relevant moments of the blockchain series as potentially endogenous – we provide 
empirical evidence of cryptocurrency price and mining rewards indeed being intrinsically 
linked to blockchain security outcomes. 

Keywords: Cryptocurrency, ARDL, blockchain, proof-of-work, security budget, institutional 
governance technology, network externalities 

JEL codes: D82, E42, G12, G15, G18, G29. 
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1 Introduction 

Blockchain – a distributed network of anonymous record-keeping peers (miners) – is an 
inherently ‘trustless’ ledger. In the proof-of-work (PoW) blockchain, the trust problem among 
non-trusting parties is solved by requiring miners to pay a cost (in form of computing capacity) 
to record transaction information on a chain of blocks and requiring that other record-keepers 
(miners) validate those blocks. Mining incentives are ensured via rewards for a correct and 
secure record keeping – the reward for every block is allocated to the miner that first solves the 
computational problem (hash function) by using guess and check algorithms based on the new 
and previous blocks of transactions. 

Cryptocurrency price shocks and hence changes in mining rewards (in a fiat currency 
denomination) affect mining incentives for the ledger record-keepers and hence the underlying 
ledger’s security. Blockchain users – who value the network security – in turn adjust their 
crypto coin portfolio exercising in such a way upward or downward pressure on 
cryptocurrency’s price (see Figures 2 and 3). The literature suggests that these 
interdependencies between cryptocurrency’s value, mining costs and blockchain security may 
contribute to the extreme volatility of cryptocurrency return (Ciaian et al. 2021b; Pagnotta 
2021). 

The present paper studies these interdependencies between mining costs, mining rewards and 
blockchain immutability. We attempt to answer the following questions. To what extent the 
cost of operating blockchains is intrinsically linked to the cost of preventing attacks? How 
closely interrelated are the digital ledger’s record-keeping security budgets (measured by 
mining rewards in a fiat currency nomination) of cryptocurrencies with the cryptocurrency 
market outcomes? We focus on the proof-of-work blockchain, which is a particularly 
interesting blockchain to study as the involved physical resource expenditures provide a 
distinct advantage in achieving consensus among distributed miners. Our results suggest that 
the cryptocurrency price and mining rewards are indeed intrinsically linked to blockchain 
security outcomes, the elasticity of mining rewards being higher than that of mining costs with 
respect to the network security equilibrium. 

The previous literature has mostly studied blockchain security concerns from a crypto-coin 
user perspective (see Lee 2019, for a survey). It has found that crypto-coin users value the 
underlying ledger security, they internalize and price the risk of a blockchain attack that could 
compromise the ability to exchange crypto-coins for goods. Blockchain users who engage in 
on-chain transactions – only the on-chain transactions are secured by the mining rewards – 
value security measured by the amount of computational power committed to the blockchain; 
ceteris paribus they prefer more computing power being committed to the ledger. There is little 
empirical evidence, however, available in the literature about the interdependencies between 
mining costs, mining rewards and blockchain security. Moreover, there is confusion in the 
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literature that the blockchain security would be an embedded property of the underlying 
institutional governance’s technology. 

Our main contribution to the literature is formally establishing a link between the probability 
distribution over security outcomes depending permanently on the underlying distribution of 
cryptocurrency market outcomes and providing a supporting empirical evidence. The papers 
most closely related to ours are from the theoretical literature on the blockchain mining and 
security (Iyidogan 2020; Pagnotta 2021; Ciaian et al. 2021a). In particular, our paper is related 
to the emerging literature on the economic properties and implications of blockchains (Abadi 
and Brunnermeier 2018; Budish 2018; Biais et al. 2019). This literature studies coordination 
among miners in a blockchain-based system and shows that while the strategy of mining the 
longest chain is in fact an equilibrium, there are other equilibria in which the blockchain forks, 
as observed empirically. Whereas Abadi and Brunnermeier (2018) place most of the focus on 
coordination among users; record-keepers' payoffs are determined by users' actions, and a 
global games refinement of the game played among users puts more discipline on exactly how 
and when a fork may occur, in Biais et al. (2019) forks occur for several reasons and are 
interpreted as causing instability; record-keepers' payoffs when forking depend exogenously 
on the number of record-keepers who choose a given branch of the fork. Budish (2018) studies 
the costs of incentivizing honesty for cryptocurrency blockchains. Cong and He (2019) focus 
mostly on the issue of how ledger transparency leads to a greater scope for collusion between 
users of the system. An alternative perspective studied in the literature is the collusion between 
the blockchain's record-keepers rather than between users, which shows that collusion can 
occur only when entry of record-keepers is constrained. 

Our results complement the findings of this emergent literature by quantifying how the 
probability distribution over security outcomes permanently depends on the underlying 
distribution of cryptocurrency market outcomes. Due to the extremely high cryptocurrency 
volatility, also the PoW-blockchain security budget is exposed to high volatility and may result 
in a series of low-security equilibriums and high-security equilibriums. In contrast, the physical 
resource cost to write on the blockchain – the cost of operating the PoW-blockchain – is only 
weakly cointegrated with the strength of the network security.  This cointegration relationship 
is geographically differenced – it is more significant for the world global mining leader China 
than for other world regions. The mining cost effect seems to trigger a downward pressure on 
the extensive margin of mining more in North America and Europe than in China, where the 
increasing intensive margin of mining more than offsets the negative effects on the network 
hash rate and hence the blockchain security. The ARDL estimates for the speed of adjustment 
of the PoW-blockchain security suggest that after temporary shocks to crypto markets any 
disequilibria is corrected and the security equilibrium reverts back to mean in the long-run. 
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The paper proceeds as follows. First, we provide a background literature overview about the 
PoW-blockchain (section 2). Second, we establish a theoretical relationship between the cost 
of proof-of-work, cryptocurrency market outcomes and blockchain security outcomes (section 
3). Third, we estimate empirically the derived structural PoW-blockchain security relationships 
for cryptocurrencies that rely on application-specific integrated circuits (ASICs), such as 
Bitcoin. We use daily Bitcoin data for 2014–2021 and employ an autoregressive distributed lag 
approach that allows treating all the relevant moments of the blockchain series as potentially 
endogenous (sections 4 and 5). To examine the extent to which this relationship is contingent 
upon exogenous price shocks, the role of the cryptocurrency mining reward and the proof-of-
work cost for each of the respective moments is estimated after accounting for the information 
embedded in the lags of the entire distribution of blockchain security outcomes. The main 
results are presented in section 6. They suggest that the cryptocurrency price, mining rewards 
and mining costs are intrinsically linked to blockchain security outcomes. The final section 
concludes. 

 

2 The record-keeping of digital transactions 

2.1 Blockchain and the proof-of-work 

Blockchain is a distributed alternative to centralized transaction-recording and record-keeping 
systems by enabling trustworthy interactions, recording transactions among non-trusting 
parties and storing interaction records. The underlying ledger that creates and stores records of 
transactions is a digital chain of blocks, where information is recorded sequentially in data 
structures known as ‘blocks’ stored into a public database ('chain'). Being distributed, 
blockchain is run by a peer-to-peer network of nodes (computers) who collectively adhere to 
an agreed distributed validation algorithm (protocol) to ensure the validity of transactions. A 
distributed network of anonymous record-keeping peers (miners) with free entry and exit is 
inherently ‘trustless’ and thus requires a trust-enhancing mechanism. To solve the trust problem 
among non-trusting parties, miners are obliged to pay a cost (in form of computing power for 
blockchain) to record transaction information and requiring that future record-keepers (miners) 
validate those reports. Under a well-functioning institutional governance technology, 
blockchain is immutable, meaning that once data have been recorded on the blockchain, it 
cannot be altered.  

The key preconditions for a well-functioning market are accuracy and security of transactions 
and enforcing property rights and contracts. In traditional centralized institutional governance 
systems, usually, state or other type of centralized authority (intermediary) guarantees the 
transfers of ownership, ensures transfers of possessions, guarantees the security of property 
rights and contract enforcement. The honest behavior of the centralized intermediary is 
incentivized through monopoly rents. A comparative advantage of distributed institutional 
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governance systems such as blockchain is the ability to achieve and enforce a uniform view 
(agreement) among non-trusting parties with divergent interests and incentives on the state of 
transactions in a cost-efficient and consensus-effective way. Blockchain security algorithms 
make it possible for distributed record-keepers to ensure that the network rules are being 
followed, i.e. all other record-keepers disregard any chain containing a block that does not 
conform to the network rules. The correctness and security is incentivized via physical resource 
costs: proof-of-work (PoW) makes it costly to extend invalid chains of blocks (Davidson, De 
Filippi and Potts 2016; Cong and He 2019).2 

Given its cost-efficiency and consensus-effectiveness advantages, blockchain’s potential 
applications go far beyond the creation of decentralized digital currencies, it can be used to 
achieve consensus of virtually any type of records or transactions, particularly of those related 
to property rights, transfer of property rights and contract execution (Davidson, De Filippi and 
Potts 2016). Blockchain technology has the potential to serve as an irreversible and tamper-
proof public record repository for documents, contracts, properties, and assets as well as it can 
be used to embed and digitally store information and instructions with a wide range of 
applications. For instance, smart contracts (self-executing actions in the agreements between 
two or multiple parties), smart properties (digitally recorded ownership of tangible and 
intangible assets) or decentralized autonomous organizations (DAOs) (Atzori 2017). Such a 
system might sustain various activities spanning from financial transactions, identity 
management, data sharing, medical recordkeeping, land registry up to supply chain 
management and smart contract execution and enforcement. Blockchains can also record 
obligations; distributed ledgers could be used in the fintech space to track consumers' 
transactions and credit histories (e.g. Davidson, De Filippi and Potts 2016; Nascimento, 
Pólvora and Sousa-Lourenço 2018). 

In the same time, ensuring a transaction correctness and security may be more challenging for 
distributed digital ledgers than for traditional centralized ledgers (Abadi and Brunnermeier 
2018).3 First, because digital goods are non-rival and non-excludable, which unlike traditional 
private goods do not prevent a double spending. Second, the security budget of distributed 
ledgers is endogenous and fluctuates over time (in a fiat currency nomination – see Figure 1), 
implying that the underlying institutional governance technology may become vulnerable to 
attacks during cryptocurrency’s low-price low-security-budget periods. Hence, marinating the 
correctness and security of transactions may become a challenge especially in periods of low 
security budget. Indeed, a number of cryptocurrency-blockchains with a comparably small 

 
2 There are two main types of validation mechanism – proof-of-work (PoW) and proof-of stake (PoS) – with each 
having different incentive scheme in achieving consensus. This paper focuses on the PoW linked to Bitcoin which 
is the largest and most popular cryptocurrency. 
3 A strong security of information in the context of a distributed ledgers implies immutable records of transactions, 
including ownership rights and smart contracts. 
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security budget of preventing attacks have experienced successful majority (hash rate)4 attacks 
in recent years, e.g. Bitcoin Gold, Ethereum Classic.5 

2.2 Blockchain mining 

The blockchain mining consists of nodes (called miners or record-keepers) of a distributed 
network competing for the right to record sequentially information about new transactions to 
the digital ledger. In the case of PoW, miners have to solve a computationally challenging 
problem in order to record information and validate others' records on the ledger (in intervals 
of around ten minutes in Bitcoin). Solving the computational problem (puzzle) is energy 
intensive and thus costly. First, miners have to invest in a computing capacity; these costs are 
fixed and independent of the success rate. Second, miners have to incur variable costs, such as 
energy (and time) for the computationally-intense mining process, and rental expenses for the 
location of the mining equipment. On the revenue side, mining incentives are ensured via 
rewards for a correct and secure record keeping. The reward for every block is allocated to the 
miner that first solves the computational problem (hash function), by using guess and check 
algorithms based on the new and previous blocks of transactions. The winning miner 
broadcasts both the new block of transactions and the solution to the computational problem to 
the entire decentralized network; all other network participants “express their acceptance of 
the [new] block by working on creating the next block in the chain, using the hash of the 
accepted block as the previous hash” (Nakamoto 2008).  

The miner's computing capacity is the main mining input, its performance is measured in a 
hash rate, which measures the speed at which a given mining machine operates. Usually, the 
hash rate is expressed in hashes per second (h/s). For example, a mining machine operating at 
a speed of 100 hashes per second makes 100 guesses per second. Thus, the hash rate measures 
how much computing capacity blockchain is deploying to continuously solve the 
computational problem and generate/record blocks. Given that a mining computer has to make 
many guesses to solve the computational problem; higher hash rate allows a miner to have 
higher number of guesses per second, thus increasing his/her chance to first solve the 
computational problem and receive the reward. 

The computational problem to be solved by miners adjusts endogenously, depending on the 
number of network participants and the aggregate blockchain computing capacity it is adjusted 
to become more difficult or less difficult. Bitcoin’s mining (hashing) difficulty algorithm is 
designed to adjust after every 2 016 blocks (approximately every 14 days) to maintain an 

 
4 The hash rate measures the speed at which a given mining machine operates. The hash rate is expressed in hashes 
per second (h/s) (or number of guesses per second), which measures how much computer capacity a 
cryptocurrency network is devoted to solve the computational problem and generate/record blocks. 
5 For example, Bitcoin Gold, a hard fork of Bitcoin, was subject to several double-spending attacks in 2018 causing 
a price reduction (in USD) by around 40%. Similarly, Ethereum Classic also experienced a double-spend attack 
in 2019 and 2020 also leading to its price decrease. 



8 
 

interval of approximately 10-minutes between blocks. When the aggregate blockchain 
computing capacity increases, the computation problem difficulty adjusts upwards (i.e. the 
required hash rate to ‘mine’ a block increases), whereas in periods of a low mining network 
participation, it decreases. The adjustment in the mining difficulty level is done for the purpose 
to compensate / counterbalance changes in the aggregate blockchain computing capacity 
employed by miners (Joudrey 2019; BitcoinWiki 2021).  

The network hash rate also determines the security and stability of the underlying blockchain 
institutional governance technology (Figures 2 and 3). The physical resource cost to write on 
the PoW-blockchain – the cost of operating the blockchain – is intrinsically linked to the cost 
of preventing attacks.6 Higher hash rate implies stronger security, because any dishonest miner 
(attacker) would need to employ more resources (computing capacity) to attack the institutional 
governance technology of blockchain.7 In the context of creating and maintaining distributed 
ledgers of information, a strong security implies immutable records of transactions, including 
ownership rights and smart contracts.  

2.3 Digital goods and decentralized ledgers vis-à-vis physical goods and centralized legers 

Correctness and security. The system security reflects the probability of an attack; security is 
paramount to any financial or non-financial network since transfers of ownership and 
enforcement of property rights require verifications, and it should be difficult for an attacker to 
manipulate historical or/and new records. In a centralized system, a specific trusted agent 
assumes such responsibility. In blockchain, however, verification and updates to the system 
ledger rely on self-selected non-cooperating agents – miners. In cryptocurrencies such as 
Bitcoin, the reward to successful miners includes transaction fees and a predetermined number 
of newly minted bitcoins, which role is to incentivize miners to devote computing capacity for 
block validation and thus to provide the system’s security. The probability of an attack is driven 
by the balance of a computing power between potential attackers and honest miners. Greater 

 
6 For illustration purpose, an example of a majority attack and gain from double-spending as provided by Van 
Valkenburgh (2018) could look as follows: An attacking miner with the majority computing power compiles a 
secret (private) version of the Bitcoin blockchain. At the same time the attacking miner sends, for example, 100 
Bitcoins to a Bitcoin exchange, sells them and sends the received money (dollars) to his/her bank account. This 
Bitcoin transaction is incorporated into the public blockchain run by honest miners. The exchange observes the 
transaction on the public (honest) blockchain, thus assumes it has the 100 Bitcoins and initiates money transfer to 
the attacker’s bank account. However, the attacker does not send the 100 Bitcoins to the exchange in his/her own 
secret blockchain version. Once the attacker receives the money to his/her bank account, the private version of 
the Bitcoin blockchain can be broadcasted to the network. Because the attacker has more computing power than 
the rest of the network combined, the attacker private chain will be longer (more cryptographic problems solved) 
and the rest of the network will recognize this new blockchain as the valid one. According to the new reorganized 
chain, the exchange that accepted the 100 Bitcoins for money no longer has those 100 Bitcoins as well as it lost 
their dollar value of Bitcoins which were sent to the attacker bank account. In contrast, the attacker has both the 
100 Bitcoins and the dollar value of 100 Bitcoins (Van Valkenburgh 2018).  
7 Different types of blockchain attacks include selfish mining, the 51% attack, Domain Name System (DNS) 
attacks, distributed denial-of-service (DDoS) attacks, consensus delay (due to selfish behavior or distributed 
denial-of-service attacks), blockchain forks, orphaned and stale blocks, block ingestion, smart contract attacks, 
and privacy attacks. 
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number of (honest) miners and more computing capacity imply smaller probability of a 
successful attack (Figure 2). 

Compared to traditional centralized ledgers, ensuring a transaction correctness and security 
may be more challenging for distributed digital ledgers like Bitcoin, because digital goods are 
non-rivalry and non-excludability which compared to traditional private goods do not prevent 
a double spending, and the security budget of distributed ledgers is endogenous and fluctuates 
over time (i.e. if the value mining rewards changes in a fiat currency nomination). Miners react 
to expected profit incentives by adjusting their computing capacity. For example, low 
expectations of a cryptocurrencies price would induce reducing computing capacity devoted to 
mining, thus rendering the network more vulnerable and potentially further magnifying the 
cryptocurrency’s price decrease. Due to miners’ rational responses, the realization of 
pessimistic cryptocurrency’s market outcomes also implies that a cryptocurrency’s security can 
severely worsen resulting in a low-security equilibrium and lowering the network’s life 
expectancy as measured by the average time until a successful attack (Pagnotta 2021). 

Double-spending attacks are one of the largest security concerns among blockchain users. 
Cryptocurrencies that have a relatively small security budget of preventing attacks have 
experienced a number of successful majority hash rate attacks in recent years. For example, 
Bitcoin Gold, a hard fork of Bitcoin, experienced a sequence of double-spending attacks in 
May 2018. Its price measured in USD at the end of that month was 40% lower. Ethereum 
Classic also experienced a double-spend attack and several deep block reorganizations, 
following a 50% decline in its price and hash rate in January 2019. Double-spending attack is 
also possible when the blockchain in question handles assets other than currency. For example, 
a financial institution that loses money on a trade may wish to reverse the history of transactions 
including that trade. 

Competition and costs. Blockchain differs from centralized legers (e.g. notary offices, cadastral 
offices, banks) along several dimensions of the market structure, competition being one of 
them. Typically, centralized ledgers are managed by monopolists (e.g. central banks) that 
extract distortionary rents from the ledger's users, because the entry is not free and switching 
between legers is costly for users. Traditional centralized record-keeping systems provide 
incentives to record honestly by monopoly profits and the fear to lose the future monopoly 
rents (Abadi and Brunnermeier 2018). In contrast, distributed record-keeping system allow for 
competition: there is a free entry (every miner can write on the ledger, subject to network rules) 
and switching between ledgers (e.g. ‘forks’) is costless for users.8 The blockchain market 
structure with free entry and fork competition eliminates the rents that a monopolist would 
extract in an identical market and eliminates the inefficiencies arising from switching costs in 

 
8 For example, a hard fork preserves all of the data in the parent blockchain: e.g. Bitcoin Gold and Bitcoin Cash 
in the case of hard forks of Bitcoin. 
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centralized record-keeping systems (Huberman, Leshno, and Moallemi 2019). There is also 
competition between a potential attacker and all honest miners. Incentives to record honestly – 
that are provided through the imposition of a physical resource cost to write on the blockchain 
– make it costly for a potential attacker to distort the ledger.  

Free entry and competition ensure that distributed ledgers can be more efficient and 
transactions less costly than centralized ledgers. Blockchain miners can enter freely, meaning 
that any agent who wishes to write on the ledger may do so by following an agreed set of rules. 
However, free entry of anonymous record-keepers is ‘trustless’ and thus requires a trust-
enhancing mechanism. Public blockchains typically solve the trust problem by forcing record-
keepers to pay a physical resource cost to record information and requiring that future record-
keepers validate those reports. In the case of the proof-of-work (PoW), miners have to solve a 
computationally challenging problem in order to record information and validate others' 
reports. The physical resource cost to write on the blockchain is the main the cost of operating 
a blockchain. Compared to distortionary rents of centralized ledgers, in distributed blockchain-
based record-keeping systems, welfare losses stem mainly from the waste of computational 
resources, computing and electricity costs of mining. Enforcing the execution of transactions 
by a cryptographic code ensures a significant reduction of transaction costs. According to 
Huberman, Leshno, and Moallemi (2019), the physical resource costs of competing non-
cooperating miners are significantly lower than monopoly rents of centralized ledgers. Hence, 
an important cost advantage of the blockchain technology compared to centralized record-
keeping systems consists of avoiding centralized intermediaries (e.g. a notary, cadastral office, 
banks) and the associated rents.  

Network externalities. Digital distributed ledgers such as blockchain are subject to network 
externalities, which are not present under centralized ledgers. When miners engage in the 
mining of blockchains, both positive and negative network externalities related to the 
blockchain security emerge. The positive network externality suggests higher blockchain 
security as the number of miners increases, because each additional node strengthens the 
chain’s security, by making it more difficult for any individual miner to launch an attack or to 
guess who will be the winning miner (Waelbroeck 2018). The negative network externality 
occurs because each individual miner invests in the mining-computing power, which increases 
both the individual miner’s marginal income though also mining costs, as the difficulty of the 
computational problem increases in the number of miners and their computing power (“hash-
power”). Subsequently, higher difficulty of mining reduces the incentives for mining and 
increases the concentration of mining activities, as miners are learning by mining, resulting in 
reduced blockchain security (Parra-Moyano, Reich and Schmedders 2019). When many small 
miners enter the blockchain network, likely, the positive network externality will dominate and 
the blockchain security outcomes will be superior compared to a highly skewed distribution of 
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computing power across miners (few mining pools having a large share of the total network 
hash rate). 

Individual non-cooperating agents do not internalize these network externalities when making 
their optimal decisions. Blockchain users (agents who engage in transactions) take the price 
and security levels as given and, unlike the central planner, do not internalize the impact of 
their decisions on mining costs. Similarly, miners do not internalize the effect of their hash rate 
choice on the blockchain security. For equilibria that display high security levels, given the 
decreasing security gains from a mining investment, the part that miners fail to internalize is 
decreasing. In contrast, the part that blockchain users fail to internalize is not decreasing, 
because marginal mining costs are not decreasing (Pagnotta 2021). 

Fourth, being a distributed institutional governance technology for creating and maintaining 
distributed ledgers of information, it is different from a centralized institutional governance. 
According to Davidson, De Filippi and Potts (2016), blockchain provides a new “institutional 
technology” or a “governance technology”. “[Blockchain can be understood] as a revolution 
(or evolution) in institutions, organization and governance” (Davidson, De Filippi and Potts 
2016). Compared to traditional centralized intermediaries, digital rules are enforced by a 
distributed network of interconnected non-trusting parties. Trustworthily interactions between 
non-trusting parties are executed and recorded on a distributed network by eliminating the need 
for a centralized intermediary. A consensus mechanism ensures that the true history is recorded 
on the ledger, rejecting fraudulent records. The build-in validation processes in the PoW 
consensus algorithm and the use of cryptographic signatures and hashes ensures the network 
governance, disincentivizes dishonest nodes to insert fake or malformed transactions in the 
blockchain, and ensures the trustworthiness of transactions among non-trusting parties on 
blockchain. The computationally established trustworthiness of the institutional governance 
technology ensures accuracy in establishing, delineating and protecting ownership rights (i.e. 
it allows owners to exercise ownership rights in terms of use, transfer, or exploitation of assets); 
it can execute and enforce contracts (through smart contracts); and it can encompass various 
types of organizations through DAOs (e.g. firms, venture capital funding, non-profit 
organization).  

Following North (1990), institutions are “the rules of the game in a society” and includes both 
formal rules such as laws and informal constraints such as “codes of conduct, norms of 
behavior, and conventions”. Formal rules are enforced by state, while informal rules are 
enforced by the members of the relevant group (North 1990; Kingston and Caballero 2009; 
Greif and Kingston 2011). According to Hodgson (2006) “institutions are systems of 
established and embedded social rules that structure social interactions”. From this point of 
view, blockchain is a type of distributed (informal) institution with digitally embedded rules of 
the game – defined within the validation algorithm and enforced through a decentralized 
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network of participants – that structure digitally recorded interactions between agents. 
According to Davidson, De Filippi and Potts (2016) “[blockchain is] an ‘institutional 
technology’, a governance technology for making catallaxies, or rule-governed economic 
orders. Blockchains thus compete with firms, markets and economies, as institutional 
alternatives for coordinating the economic actions of groups of people, and may be more or 
less efficient depending upon a range of conditions (behavioural, cultural, technological, 
environmental, etc).” 

Fifth, significant changes in the global technological development (e.g. new/faster technologies 
become available) or macroeconomic environment, require adjustments in the institutional 
governance – either by a central authority or endogenously. Technological changes underlying 
digital institutional governance systems are considerably faster compared to traditional 
institutional governance systems. In traditional centralized record-keeping systems, the 
frequency of important technological changes and the required institutional governance 
adjustments is low; the key role in adjusting institutions to changes in the external environment 
plays the centralized intermediary. In digital self-enforcing record-keeping systems, the 
frequency of technological changes and the required institutional governance adjustments is 
high; the institutional governance is adjusted endogenously. For example, the blockchain 
network governance employs the PoW consensus algorithm and uses cryptographic signatures 
and hashes. The institutional governance technology of Blockchain is frequently adjusted 
(every 14 days) to changes in the technological development (e.g. growth of the mining 
processor computing speed) or macroeconomic environment (e.g. significant increase in the 
cryptocurrency’s value and hence mining rewards in a fiat currency denomination) by adjusting 
mining incentives for the network record-keepers (Dollar and Kraay 2003; Hodgson 2006; 
Glaeser et al. 2004; Kingston and Caballero 2009; Greif and Kingston 2011). 

Blockchain provides a particularly interesting case to study, as the institutional governance 
system (i.e. the security of the enforcement of property rights and contracts) is determined 
endogenously by the underlying governance technology. Whereas traditional centralized 
institutional governance systems often are path-dependent and face many impediments to bring 
about evolutionary developments (e.g. interest group pressure, bargaining and political conflict 
between interest groups) which makes them less sensitive to economic changes (North 1990; 
Kingston and Caballero 2009; Greif and Kingston 2011), the flexibility in institutional 
adjustment of digital distributed ledgers allow them to adopt and accommodate changing 
market conditions such as integrating and stimulating the growth of new technologies and 
"non-tangible" innovations. Institutional rigidity (neutrality) could be desirable in certain 
situations particularly when underlying factors (e.g. economic crisis, political crisis, civil 
conflicts, wars) pressure towards lower-quality institutions, but not in others (uni-directional 
institutional change towards its improvement is desirable, not vice versa). Hence, it is important 
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to understand the interdependencies between mining costs, mining rewards and blockchain 
security. 

 

3 Conceptual Framework  

3.1 The model 

We want to determine theoretically the equilibrium relationships between blockchain security, 
cryptocurrency market outcomes and resources devoted to the blockchain mining. Building on 
the mining models of Thum (2018) and Budish (2018) and considering the PoW of the most 
popular cryptocurrencies as example, we model a rational miner i that decides on the quantity 
of computing capacity, mit (e.g. expressed by the number of computer operations), to devote 
for mining each block t (represented in block time measured in 10 minute interval which is the 
average time needed to mine a block in blockchain). The mining output is measured in capacity 
of blockchain security units. 

The probability of miner i winning the contest (i.e. the right to generate a new block and collect 
reward) depends on his/her computing capacity devoted for each block relative to the 
computing capacity of other miners. Previous studies assume that the probability of winning 
the contest and validating a block is independent of the miner size: , where nt 
is the total number of miners and  is the total blockchain computing capacity of other 

miners devoted to the block t (e.g. Cocco and Marchesi 2016; Thum 2018). However, Parra-
Moyano, Reich and Schmedders (2019) show that the probability of relatively bigger miners 
winning the mining contest is higher than that of relatively smaller miners because there is a 
“learning" effect when mining a particular block with larger mining computers learning faster 
than smaller mining computers. To account for the learning by mining, we assume the 
following transformation of the probability for a miner winning a block: , 

where  is a transformation parameter (with ), which implies that the ratio of odds 
between big and small miners (mining computers) of winning a block increases with the 
miners’ size, mit, while keeping the ratio of miner’ size between miners fixed. 

The purchase price of one unit of a computer equipment of a given efficiency, , is denoted by 
. The successful miner receives reward ptRt, where Rt is cryptocurrency quantity and pt is the 

cryptocurrency price per one unit expressed in monetary values (e.g. US dollar). Miner i 
chooses computing capacity, mit, for a given computer efficiency, so that to maximize the 
present discounted value of the flow of profits over the infinite time horizon: 

(1)  

Subject to  units of computing capacity: 



14 
 

(2)  

where ct denotes variable costs per computer operation (e.g. energy cost), E(pt) is the expected 
cryptocurrency price,  is depreciation rate,  is investment in computer equipment, F are 
one-time fixed costs (e.g. building – see Garratt and van Oordt 2020), and  is a discount rate 
for time preference. Deviations from the expected price are random shocks, ν, with an expected 
value of zero: E(pt) = pt*, where pt = pt* + ν. We assume a rational price expectation framework 
of Muth (1961) in which miners base their cryptocurrency price formation on all the available 
information at the time when making their decisions on the investment in mi. Miners are 
identical, risk-neutral, non-cooperative and profit-driven agents that invest according to the 
anticipated real value of block rewards. 

Maximizing miner i’s profits for the given blockchain computing capacity of all other miners 
yields the following optimal conditions: 

(3)  

(4)  

(5)  

where  is a shadow price for a unit of computer resources. 

Assuming a steady state equilibrium with , , , , and 
 for  and a symmetric equilibrium with mit = mjl, the equilibrium computing 

capacity per miner can be derived from equations (3) to (5) as follows: 

(6)  

Rewriting equation (6) in terms of the total blockchain computing capacity devoted to mining, 
, yields the mining equilibrium: 

(7)  

Equation (7) implies that the total blockchain computing capacity increases in the relative gain 
from mining, . The mining equilibrium implies that the blockchain 
computing capacity devoted to mining fluctuates with the cryptocurrency price. This model 
feature reflects the intuition that, ceteris paribus, higher nominal reward or higher 
cryptocurrency price induces miners to invest in more computing capacity. The opposite is true 
when agents anticipate the value of cryptocurrency to be low, miners have little incentive to 
invest in computational resources, and the security of the network is low.  

Second, the mining equilibrium (7) implies that the total blockchain computing capacity 
increases at a decreasing rate in the level (intensity) of competition, .   
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Third, equation (7) implies that miners have incentives to revert to the equilibrium level of the 
blockchain computing capacity as a response to cryptocurrency price shocks because otherwise 
miners would experience losses. 

We follow Abadi and Brunnermeier (2018) and assume a free entry equilibrium where miners 
enter until profits are driven to zero. In the blockchain system, miners don’t compete in prices 
but in capacity, similar to Cournot-type firms. An increase in the processing power of 
competing miners results in the expansion of the total blockchain computing capacity. In the 
presence of network externalities, free entry of miners serves to pin down the strength of the 
security. 

Using equations (5) and (6), it is possible to derive the equilibrium number of miners, nt, 
depending on mining returns, variable costs, fixed costs and the level (intensity) of 
competition, : 

(8)  

Fixed costs are related to credit constraint and rigidities to increase capacity related to financing 
the entry costs into the mining. 

Equations (3) to (7) define the equilibrium behavior of honest miners by pinning down the level 
of computer resources they would allocate for mining at a given level of reward and 
competition from other miners. The total blockchain computing capacity devoted to the 
blockchain mining, , determines the security of blockchain. As discussed above, the more 
challenging is the computational mining puzzle to solve, the safer and more stable is the 
institutional governance technology because it becomes more costly for a potentially dishonest 
miner to conduct an attack. Such an attack may adversely affect the perception of 
cryptocurrency by its users reducing their trust and hence valuation of the cryptocurrency. If 
the reduction of the trust is large, it may cause a collapse in the economic value (price) of 
cryptocurrency. As equation (7) implies, the blockchain computing capacity for mining and 
hence the hash rate of the network would reduce, which might eventually lead to a collapse of 
blockchain. Thus, the security of the PoW blockchain depends on the size of mining reward 
received by miners which also determines the total blockchain computing capacity determined 
in equation (7). 

3.2 Blockchain security and attacks 

The probability of a (successful) attack on blockchain is reflected in the underlying ledger’s 
security, it is inversely related the blockchain’s security budget. This probability is driven by 
the balance of computing power between an attacker and honest miners. As noted by 
BitcoinWiki (2021), “Bitcoin's security model relies on no single coalition of miners 
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controlling more than half the mining intensity”.9 A miner who controls more than 50% of the 
total blockchain computing capacity could exercise attack on blockchain that involves the 
addition of blocks that are somehow invalid or reverse previous accepted transactions 
(“majority attack”). Either the blocks contain outright fraudulent transactions, or they are added 
somewhere other than the end of the longest valid chain. A successful majority attacker could 
prevent (for the time that the attacker controls mining) confirmation of new transactions (e.g. 
by producing empty blocks) and reverse own transactions which potentially allows double-
spending thus affecting all transactions that share the history with reversed transactions 
(BitcoinWiki 2021). 

In our model, to control a majority power, equation (7) implies that an attacker must control 
more than 50% of the total blockchain computing capacity, , where A > 1. If we assume 
that the attack takes the duration equal to s block time, then the attacker’s costs10 are 

 and the mining reward during the attack is sptRt, where 
 ( ) represents the proportion of the mining technology, mt, that can be recovered 

(reused, resoled, repurposed) after the attack.11 The first term of the attacker’s costs, 
, includes energy and investment costs, while the second term, 

, represents the loss related to the part of mining technology that cannot be recovered 
after the attack. 

To des-incentivize and deter attacks on blockchain, the cost of an attack must be greater than 
the potential gain from an attack. Using the optimal condition (5), this implies the following 
incentive compatibility condition for blockchain against attacks: 

(9)  

where  ( ) is the proportional decrease in the price of cryptocurrency after the attack 
and VA is the expected payoff of the attack which is dependent on  and is equal to the sum of 
gains, , obtained over the duration of attack s with .12 The payoff from 
the attack, VA, can represent the gain from a cryptocurrency double-spending or other type of 
gains (e.g. gain from a short sale of cryptocurrency, gain in cryptocurrency future markets from 
price fluctuation caused by the attack).  

Using equation (6), the incentive compatibility condition (9) can be rewritten as: 

 
9 Although Bitcoin has not suffered from a majority attack, a number of Altcoins were subject to successful attacks 
in the past. For example, this was the case of the Bitcoin hard fork (Bitcoin Gold) in May 2018 (stealing $18 
million worth of Bitcoin and other cryptos ), Ethereum Classic (ETC) in January 2019 (double spending to over 
200,000 ETC worth around $1.1 million), and Verge (XVG) was attacked several times in 2018 (with the biggest 
attack extracting about 35 million of XVG) (ViewNodes 2019). 
10 According to Crypto51 (2021), the theoretical cost of a 51% attack on Bitcoin is $ 413,908 per one hour. 
11 Note that if Bitcoin does not collapse after the attack, the mining equipment can be reused in continuing mining 
Bitcoin.  
12 Note that in the steady state situation assumed in the incentive compatibility condition (9), implies that the 
discount rate ρ cancels out with  for . 
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(10)  

where  

Consider an attack where the only gain, VA, is double spending. The attacker acquires  units 
of crypto coins which (s)he double spends during the attack by exchanging them for the 
standard fiat currency. This implies that the gain from attack is . 
After the attack, the attacker keeps the value of (double spent) X cryptocurrency in the standard 
fiat currency, , but loses partially or fully (value of) cryptocurrency acquired for the 
attack, . If  is sufficiently small (i.e. cryptocurrency does not collapse after the 
attack), then the system is vulnerable to the double-spending attack. However, if  there is 
no gain from double-spending attack because the double spending attacker loses exactly as 
much value as (s)he gains from double spending. That is,  and equation (10) 
collapses to . If  is sufficiently 
large, then the attack can sabotage the blockchain and lead to its complete collapse if . In 
this case, the motivation of the attacker may be other than the gain (profit) from double 
spending (e.g. adversary power interested to damage the cryptocurrency which could include 
a competing centralized intermediary, a competing cryptocurrency, or other entity) (Budish 
2018).  

In line with Abadi and Brunnermeier (2018); Budish (2018), equation (10) implies that the 
equilibrium block reward to miners must be sufficiently large relative to the one-off gain from 
the attack. Given that the gain from the attack, , is unknown (e.g. in the case of the double 
spending attack, X an thus  could be large for ) and its value 
might be substantial, the equilibrium mining intensity needs to be larger than the one implied 
by equation (7) in order to deter an attack. This is induced by the fact that the payoff from the 
blockchain attack, VA, does not affect the economic behavior (incentives) of honest miners in 
allocating their computing capacity for mining (i.e. VA does not enter in equation (7)). 

3.3 Testable hypotheses 

From equations (7)-(10), we can derive three empirically testable hypotheses: 

 Mining reward hypothesis: Security outcomes of the PoW-blockchain and the 
cryptocurrency price. When agents anticipate the value of cryptocurrency to be low, 
miners have little incentive to invest in computational resources, and the security of the 
network is low. The opposite is true when agents anticipate the value of cryptocurrency 
to be high. Ceteris paribus, the blockchain security is sensitive (elastic) to the mining 
reward. 

 Mining cost hypothesis: The physical resource cost to write on the PoW-blockchain is 
intrinsically linked to the cost of preventing attacks; the security of blockchain is 
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structurally linked to the ledger’s security budget and mining costs. Ceteris paribus, the 
blockchain security is sensitive (elastic) to mining costs.   

 Mean-reverting hypothesis: The mean-reverting behavior of the PoW-blockchain 
security implies that temporary cryptocurrency price shocks and mining cost shocks do 
not affect the long-run blockchain security. Ceteris paribus, the PoW-blockchain 
security reverts back to mean in the long-run.  

 

4 Estimation strategy 

4.1 Empirical PoW blockchain security model 

The theoretical analysis established interdependencies between blockchain security, 
cryptocurrency market outcomes and resources devoted to the blockchain mining. Equation (7) 
implies that the security (measured by the allocated computing capacity) of the PoW-
blockchain depends on mining rewards, the intensity of miners’ competition, mining costs, 
discount rate and the computer equipment cost-efficiency. 

In this section, we assess empirically the interdependencies between mining costs, mining 
rewards and the PoW-blockchain security outcomes on cryptocurrency market outcomes and 
mining resources. For the sake of tractability, it is useful to apply a logarithmic transformation 
to equation (7), which yields the following equilibrium relationship: 

(11)  

where y represents the dependent variable – the PoW blockchain security (computing capacity 
devoted to mining),  is a vector of coefficients to be estimated, x is a vector of explanatory 
covariates – mining rewards, , the number of miners, , the intensity of miners’ 
competition, , the cost of mining (including the discount rate),  and 
the computer equipment efficiency, , and  is an error term. 

The expected signs of coefficients for the mining reward and the intensity of miners’ 
competition in equation (11) are expected to be positive (number of miners and mining reward 
effects in Figure 2). The sign of coefficient associated with the cost of mining (energy costs 
and discount rate) is expected to be negative (mining cost effect in Figure 3). The computer 
equipment cost-efficiency coefficient is expected to have a positive relationship with the 
blockchain computing capacity, because everything else constant, higher computing efficiency 
implies that less energy is needed to achieve a certain computing hash rate. Our primary interest 
is on coefficients associated with the mining reward and the cost of mining: the first coefficient 
measures the elasticity of the PoW-blockchain security (mining network hash rate) with respect 
to the mining reward (Mining reward hypothesis) and the second one with the mining costs 
(Mining cost hypothesis). They reflect the level of endogeneity of the security of the PoW-
blockchain with respect to cryptocurrency market outcomes.  
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4.2 Estimation issues 

The estimation of interdependencies between mining costs, mining rewards and blockchain 
security determined in equation (11) is subject to several econometric issues. The first aspect 
to consider is the problem of endogeneity. The endogeneity issue is particularly relevant for 
distributed digital ledger series, as the security outcomes of the PoW-blockchain can be 
determined concurrently with the cryptocurrency mining reward. For example, when 
distributed agents anticipate the value of cryptocurrency to be low, miners are not motivated to 
invest in computational resources, and the security of the blockchain would be low. In that 
case, crypto-coin users do not wish to accumulate large real balances, and the resulting market 
valuation for cryptocurrency would be low. The opposite would be true if the value of 
cryptocurrency is expected to be high. 

To address the endogeneity problem, we rely on the Autoregressive Distributed Lag (ARDL) 
methodology that is being increasingly used for studying cryptocurrencies (e.g. Bouoiyour and 
Selmi 2015) and financial markets more generally (e.g. Stoian and Iorgulescu 2020). The 
ARDL bounds testing approach developed by Pesaran and Shin (1999) is particularly 
appropriate for estimation of the blockchain security equilibrium relationship (11) as it enables 
to model the long- and short-run relationships simultaneously and has several advantages over 
the standard cointegration methods. A key advantage for our analysis is that the ARDL 
approach allows treating all the relevant moments of blockchain series as potentially 
endogenous. As noted by Pesaran and Shin (1999, p. 16), the use of ARDL is well suitable to 
address the endogeneity problem: ‘‘appropriate modification of the orders of the ARDL model 
is sufficient to simultaneously correct for residual serial correlation and the problem of 
endogenous regressors’’. 

In the context of cryptocurrencies, another important advantage is that the ARDL approach 
permits different number of lags for each series. Contrary to other cointegration techniques 
(see Engle and Granger, 1987; Phillips and Ouliaris, 1990; Johansen, 1991), the ARDL 
methodology does not require testing for the order of integration; it can be applied irrespective 
of whether the regressors are purely I(0), purely I(1) or mutually cointegrated variables 
(Pesaran et al., 2001). However, as pointed out by Ouattara (2004), if I(2) variables are present 
in the data, the computed F statistics of Pesaran et al. (2001) become invalid. To make sure 
that none of the variables is integrated of order I(2) or beyond, we investigate the integration 
status of the series by using the augmented Dickey–Fuller (ADF) test, the Dickey–Fuller GLS 
test (DF-GLS) and Phillips–Perron (PP) test. In order to find the appropriate number of lags 
for the series we follow the Akaike Information Criterion. Accordingly, the role of the 
cryptocurrency mining reward and the proof-of-work cost for each of the respective moments 
can be estimated after accounting for the information embedded in the lags of the entire 
distribution of blockchain security outcomes. 
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Second, there is also a potential errors-in-variables problem because part of the series is 
obtained from primary non-harmonized data sources and it is not straightforward to judge the 
reliability of these series. This concerns mainly the series that are not recorded on blockchain, 
(e.g.  mining cost data). Indeed, the mining unit costs time series for different world regions 
are collected by using different sampling methodologies and different weights. These issues 
can be partially addressed by first differencing the data. Nevertheless, part of potential errors-
in-variables issues remain. To address the remaining potential errors-in-variables, we create 
alternative proxies for the dependent variable – blockchain security – and key explanatory 
variables – mining competition – and estimate these otherwise identical mining models for 
robustness. The robustness checks results do not indicate any abnormal deviations in the 
estimated coefficients when cointegrating alternative proxies for the critical series. 

4.3 Econometric strategy 

The ARDL procedure involves two steps. First, we check for the existence of a long-run 
relationship by comparing the calculated F-statistic with the critical value tabulated by Pesaran 
et al. (2001). We begin with the general form of an ARDL(p, q) model: 

(12)  

where y represents the dependent variable – security (computing capacity) of mining, x is a 
vector of independent variables – mining rewards, intensity of miners’ competition, energy 
costs, discount rate and the computer equipment efficiency, b0 is the intercept, p is the number 
of optimal lags of the dependent variable and q represent the number of optimal lags of each 
explanatory variable.  

Pesaran et al. (2001) proposed two types of critical values for a given significance level. The 
first type assumes that all variables in the model are I(1), whereas the second one assumes that 
all series are I(0). If the computed F statistic is below the lower bound, the null hypothesis of 
no long-run relationship fails to be rejected. In such case, an ARDL model in first differences 
without an error correction term should be estimated. If the F-statistic lies between the two 
bounds, the result is inconclusive. And finally, if the computed F-statistic exceeds the upper 
bound, the null hypothesis of no cointegration is rejected. In this case, the error correction 
model to be estimated is: 

(13)  

where θ represent the long-run coefficients,  is the first difference operator, ψ are short-run 
multipliers and α shows the speed of adjustment of the dependent variable to a short-term 
shock. It measures how quickly the blockchain security adjusts to deviations from the 
equilibrium (Mean-reverting hypothesis). 
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4.4 Specification tests 

Following the standard approach in the literature (Pesaran et al. 2001), we apply a set of 
diagnostic tests, as the validity of ARDL results is based on the assumption of normally 
distributed error terms, no serial correlation, heteroscedasticity and stability of the coefficients. 
The empirically estimable model specifications and the number of lags is determined based on 
the results from diagnostic tests, i.e. Breusch-Godfrey LM test and Durbin’s alternative test for 
autocorrelation, Breusch-Pagan/Cook-Weisberg test for heteroscedasticity, normality testing 
and cumulative sum test for the parameter stability. 

 

5 Data 

In empirical estimations, we use Bitcoin daily data for the period 27/12/2014 – 10/01/2021. 
The details of data series used in estimations and their sources are reported in Table 1. All time-
series are transformed in a log-form in the estimations, implying that the estimated coefficients 
can be interpreted as elasticities. Table 2 provides a descriptive statistic of the data used. The 
construction of dependent and explanatory variables is explained in the following. 

Our principal data source is blockchair.com that contains records for the entire Bitcoin mining 
history starting from 2009 until latest transactions in 2021. For each block successfully mined, 
blockchair.com contains 36 block-specific characteristics: block_id, hash, time, median_time, 
size, stripped_size, weight, version, version_hex, version_bits, merkle_root, nonce, bits, 
difficulty, chainwork, coinbase_data_hex, transaction_count, witness_count, input_count, 
output_count, input_total, input_total_usd, output_total, output_total_usd, fee_total, 
fee_total_usd, fee_per_kb, fee_per_kb_usd, fee_per_kwu, fee_per_kwu_usd, cdd_total, 
generation, generation_usd, reward, reward_usd, miner. We aggregate single blocks into daily 
mining output, to align with the rest of the data. 

5.1 Dependent variable 

The dependent variable is the PoW-blockchain security. According to the theoretical model, 
the ledger security reflects the probability of an attack; a high security implies that it should be 
difficult for an attacker to manipulate historical or/and new records. The probability of an attack 
is determined by the balance of the computing power between potential attackers and honest 
miners. More (honest) miners and higher computing capacity imply smaller probability of a 
successful attack (Figure 2). 

In the empirical analysis, we measure the blockchain computing capacity devoted to mining by 
hash rate, it is expressed in average daily hashes per second. According to CoinMetrics, there 
are several drawbacks with the hash rate index.13 The most important one relates to the random 

 
13 https://coinmetrics.io/coin-metrics-state-of-the-network-issue-49  
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block generation process, because of which the implied hash rate tends to follow an oscillating 
pattern. On the one hand, there is randomness as to whether or not a contract would settle at 
the top or bottom of an oscillation, which could significantly impact the outcome of a 
transaction. On the other hand, the hash rate can be manipulatable by large miners that control 
significant portions of the network hash rate. To circumvent these issues, we use difficulty as 
an alternative proxy for measuring the blockchain computing capacity. The alternative 
dependent variable mining difficulty measures the effort required to mine a new block on the 
blockchain. Both proxies for the network security – hash rate and difficulty – have been 
extracted from bitinfocharts.com (see Table 1). Both series were verified against data from 
blockchair.com. 

5.2 Explanatory covariates 

Mining reward. PoW-blockchain mining incentives are ensured via rewards for a correct and 
secure record keeping. The reward for every block is allocated to the miner that first solves the 
computational problem (hash function), by using guess and check algorithms based on the new 
and previous blocks of transactions. The mining reward of distributed ledgers is endogenous 
and fluctuates over time (in a fiat currency nomination – see Figure 1), implying that the 
underlying institutional governance technology may be contingent on the mining reward. In 
the empirical analysis, the variable mining reward is measured as the average daily value of 
the reward per block calculated by dividing the total mining reward per day (in US dollars) by 
the total number of blocks per day. Both variables – the total mining reward/day and the total 
number of blocks/day – have been extracted from blockchair.com (see Table 1). 

Proof-of-work costs. Free entry and competition ensure that distributed ledgers can be more 
efficient and transactions less costly than centralized ledgers. As determined in the theoretical 
model (section 3), blockchain miners can enter freely, meaning that any agent who wishes to 
write on the ledger may do so by following an agreed set of rules. However, free entry of 
anonymous record-keepers is ‘trustless’ and thus requires a trust-enhancing mechanism. PoW-
blockchains solves the trust problem by forcing record-keepers to pay a physical resource cost 
to record information and requiring that future record-keepers validate those reports. The 
physical resource cost to write on the blockchain is the main the cost of operating a distributed 
digital ledger and forms the PoW-blockchain’s security budget. 

In the empirical analysis, we construct a separate resource cost proxy for each global world 
region to measure the variable mining unit costs. According to Ciaian et al. (2021b), electricity 
costs account for 94-97 percent of variable mining costs of PoW blockchains. Hence, we use 
electricity prices in Europe (electricity Europe), China (electricity China) and North America 
(electricity N. America) to measure a region-specific cost of mining. These series have been 
constructed from three distinct sources: European Electricity Index (epexspot.com), Chengdu's 
Usage Price Electricity for Industry (ceicdata.com) and Electricity Price in North America 
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(reports.ieso.ca) (see Table 1). To address potential errors-in-variables issues, we construct 
alternative proxies for measuring the variable mining unit costs and estimate these otherwise 
identical mining models for robustness. 

As regards the fixed costs of mining, the mining equipment efficiency is proxied with the most 
efficient mining hardware available in each time period measured by the energy efficiency of 
the hardware (see Table 6 for an overview). This approach follows closely the literature (Zade 
and Myklebost 2018; CBEI 2021). We proxy the discount rate with the US 10-year treasury 
constant maturity rate (10-year-treasury). The 10-Year Treasury Constant Maturity Rate 
(DGS10) is extracted from fred.stlouisfed.org (see Table 1). 

Number of miners. The total number of blockchain miners affects the blockchain security both 
directly and indirectly via network externalities (see Figures 2 and 3). When miners engage in 
the mining of blockchains, two types of opposite network externalities of the blockchain 
security arise, one positive and one negative. The positive network externality implies that the 
blockchain security is increasing with the number of miners, because each additional node 
reinforces the chain’s security, by making it harder for any individual miner to launch an attack 
or to guess who will be the winning miner (Waelbroeck 2018). The negative network 
externality occurs because each individual miner invests in the mining-computing power, 
which increases both the individual miner’s marginal income though also mining costs, as the 
difficulty of the computational problem increases in the number of miners and their computing 
power (“hash-power”). Increasing the difficulty of mining reduces the incentives for mining 
and – in the presence of learning by mining – increases the concentration of mining activities, 
reducing in such a way the blockchain security (Parra-Moyano, Reich and Schmedders 2019). 
When many small miners enter the blockchain network, likely, the positive network externality 
will dominate and the blockchain security outcomes will be superior compared to a highly 
skewed distribution of computing power across miners (few mining pools having a large share 
of the total network hash rate). 

In the empirical analysis, we compute the total number of miners from the blockchair.com (see 
Table 1). Note that using Blockchair data we are able to distinguish between the total number 
of active miners and successful miners in every period. Although, the two series are correlated, 
their moments are different – the speed of adjustment to exogenous input and output price 
shocks is different between the two series. Distinguishing between the total number of active 
miners and successful miners is an important innovation compared to previous studies, Parra-
Moyano, Reich and Schmedders (2019) is the only study we are aware of that uses a 
comparable decomposition technique. 

Competition intensity. As discussed in section 2 and derived in the theoretical model, PoW-
blockchain-based distributed record-keeping systems allow for competition: there is a free 
entry (every miner can write on the ledger, subject to network rules) and switching between 
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ledgers (e.g. ‘forks’) is costless for users.14 There is also competition between a potential 
attacker(s) and all honest miners. Incentives to record honestly make it costly for a potential 
attacker to distort the ledger. In the empirical analysis, we consider two alternative proxies for 
the competition intensity – Herfindahl-Hirschman index (hhi) and normalized Herfindahl-
Hirschman index (hhi normalised) – in order to account for the unequal distribution of the 
blockchain computing capacity between different miners. Both Herfindahl-Hirschman 
concentration indices are computed based on the network hashrate. 
Both series – the total number of active miners and the network hashrate – have been extracted 
from blockchair.com (see Table 1). 

 

6 Results 

Before proceeding with the ARDL bounds testing we determine the order of integration of the 
variables. The test results summarized in Table 4 indicate that there are no variables integrated 
of the second order, which validates the use of the ARDL approach. 

Table 3 summarizes the three estimated mining models with alternative specification of 
explanatory variables and for each of the 3 models we include 2 sub-models with alternative 
measures of the PoW-blockchain security, i.e. hash rate and difficulty. The three estimated 
mining models differ by the proxy measuring the computer intensity. Model 1 uses competition 
intensity variable, , as derived in equation (7), whereas models 2 and 3 use the two 
alternative proxies for competition intensity: the Herfindahl-Hirschman index (hhi) and the 
normalized Herfindahl-Hirschman index (hhi normalised), respectively. The rest of variables 
are uniform across all estimated mining models. 

6.1 Mining reward and PoW-blockchain security 

The mining reward hypothesis says that, ceteris paribus, the blockchain security is sensitive 
(elastic) to the mining reward. The long-run ARDL estimates tend to confirm a structural 
relationship between the mining reward and security outcomes of the PoW-blockchain (Table 
4). This holds for both security variables measuring the blockchain computing capacity, hash 
rate and difficulty, and across all estimated models. The estimated elasticities of the mining 
reward variable range from 1.38 to 1.85, indicating an elastic response in the blockchain 
computing capacity to permanent changes in the mining reward: 1% permanent increase in the 
mining reward increases the underlying blockchain security by 1.38% to 1.85% in the long-
run. Hence, our estimates fail to reject the mining reward hypothesis: the PoW-blockchain 
security is overly sensitive (elastic) to the cryptocurrency mining reward. A change in the 
payoff from mining causes more than proportionate change in the PoW-blockchain security. 

 
14 For example, a hard fork preserves all of the data in the parent blockchain: e.g. Bitcoin Gold and Bitcoin Cash 
in the case of hard forks of Bitcoin. 
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As discussed in section 2 and derived in the theoretical model, given that mining costs are 
incurred in standard fiat currencies in most cases (e.g. US dollar, Euro), the value of the mining 
reward fluctuates with the price of cryptocurrency,15 which in turn affects the mining reward 
and mining incentives. Thus, if the expected cryptocurrency price decreases, lower mining 
incentives reduce the equilibrium computer mining capacity and hence the cryptocurrency 
security. Our estimates also imply that the reverse is valid in the case of a cryptocurrency price 
increase.  

As regards the short-run estimates for the mining reward, they are less significant across the 
estimated ARDL models than the long-run results and the estimated elasticity is rather small 
(Table 5). A 1% positive shock in the Bitcoin mining reward (the third lag) decreases the 
blockchain computing capacity in the short-run by between 0.01% and 0.02%. Generally, also 
the short-run estimates tend to support the mining reward hypothesis: although an inverse 
relationship is found in our data, the security outcomes of the PoW-blockchain shows 
sensitivity to the Bitcoin mining reward even in the short-run. This negative relationship 
between the mining reward and mining intensity could be a result of other short-run effects 
such as mining optimization across cryptocurrencies, i.e. switching mining to other 
cryptocurrencies (e.g. to Bitcoin cash) when the relative price of Bitcoin to cryptocurrencies 
decreases.16 This short-run inverse relationship could also be caused by secondary spiral effects 
induced by Bitcoin price changes – decrease (increase) – as suggested by Kroll, Davey and 
Felten (2013), through the subsequent loss (gain) of confidence (trust) in Bitcoin when Bitcoin 
mining intensity decreases (increases) which might further reduce (increase) the Bitcoin price. 

6.2 Proof-of-work cost and blockchain security 

The mining cost hypothesis says that, ceteris paribus, the blockchain security is sensitive 
(elastic) to mining costs. To capture a region-specific cost of mining, we have constructed 
distinct electricity price variables for Europe, China and the North America. 

The long-run estimates for the proof-of-work cost are less significant across the estimated 
ARDL models than mining reward results and the estimated elasticity shows a substantial 
variation across world mining regions (Table 4). In line with the mining cost hypothesis, the 
estimated impact of variable mining unit costs is negative and statistically significant for North 

 
15 Note that the change in Bitcoin price is the main factor deriving the change in the value of mining reward 
because according to the algorithm the quantity of mining reward in Bitcoins, Rt, changes (halves) only 
approximately every 4 years, whereas Bitcoin price changes daily. 
16 There is some evidence of asymmetric change in Bitcoin and altcoin prices: shocks to altcoins prices tend to be 
greater than Bitcoin price shocks (Reiff 2018; Cheikh, Zaied and Chevallier 2020). This implies that the relative 
prices of Bitcoin to altcoins are inversely related with the Bitcoin price changes which may incentivize miners to 
shift some Bitcoin computer capacity to mining altcoins when Bitcoin price increase, and shift back the computer 
capacity to Bitcoin mining when Bitcoin price declines. Note that the shift in mining between different cryptos is 
less relevant for ASIC mining hardware, commonly used for Bitcoin mining, which is more efficient in mining 
specific cryptocurrencies (specific cryptographic hash algorithm) and cannot be used for mining other types of 
cryptocurrencies. 
16 https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china 
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America and Europe. In contrast, the long-run estimates for the global mining leader China – 
71.70% of the global Bitcoin hash rate are concentrated in China (Song and Aste 2020) – 
suggest a statistically significant and positive relationship between the proof-of-work cost and 
the security of the PoW-blockchain. This result is contrary to the theoretical predictions and 
requires some explanation.  

One explanation for these geographically differentiated results could be that the intensive 
margin of mining is larger in China, where all major mining pools are concentrated. Given that 
variable mining costs are lower in China than in Europe and North America, positive shocks 
to electricity prices may actually increase the global share of Chinese miners. Indeed, our 
estimates capture other long-term behavioral effects of miners induced by a permanent change 
in electricity prices such as shifting mining location to places with cheaper energy (e.g. to 
remote regions of China, from mainland Europe to Iceland to harvest geothermal power).17 
Such long-term behavioral effects may actually increase the blockchain computing capacity, if 
the energy cost savings more than offset the price increase. Further, these results may also 
reflect the fact that the mining input cost data (which are location-specific) are less reliable 
than the mining reward data, which are publicly available for every single historical 
cryptocurrency transaction.  

The short-run results for the variable mining unit costs and security outcomes of the PoW-
blockchain are available for China, they cannot be examined for North America and Europe 
due to the estimated ARDL specifications (Table 5). In line with the theoretical model in 
equation (7), positive shocks to electricity prices in China have a statistically significant and 
negative impact on the blockchain computing capacity of the PoW-blockchain in the short-run. 
This result contrasts long-run estimates, where a permeant increase in electricity prices in 
China led to an increase in the mining intensity suggesting that other structural changes in 
miners’ behavior might take place when the cost changes are permanent. Thus, our short-run 
PoW cost estimates tend support the mining cost hypothesis that the security outcomes of the 
PoW-blockchain is sensitive to mining costs. In the long-run, however, structural shifts and 
relocation of mining farms – to reduce mining operating costs – may take place and offset the 
short-run mining cost effect. 

Overall, these ARDL bounds testing results suggest that the blockchain security is sensitive to 
proof-of-work costs. However, we cannot provide a definite and robust answer to the mining 
cost hypothesis. Instead, these results call for further analysis using more disaggregated 
location-specific mining cost data. Indeed, looking into proof-of-work costs and blockchain 
security outcomes using geographically disaggregated data offers a promising avenue for the 
future research. 

 
17 https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china 



27 
 

A further variable capture mining costs in our model is the hardware efficiency. In line with 
the theoretical model, the hardware efficiency variable has a statistically significant positive 
impact on the blockchain computing capacity in all estimated models. The ARDL results imply 
that an increase in the efficiency of mining equipment (decrease in the input units of the 
computing capacity per security output unit) leads to an upgrade of security outcomes of the 
PoW-blockchain in the long-run. The estimated elasticities vary between 0.23 and 0.83, 
implying that a 1% permanent increase in the efficiency of mining equipment increases the 
blockchain computing capacity in the long-run by between 0.23% and 0.83%. Hence, the PoW-
blockchain mining security is dependent of the mining technology available in each given point 
of time.18  

6.3 Competition and network externalities 

The theoretical mining model in (7) implies that the total blockchain computing capacity 
increases at a decreasing rate in the level (intensity) of competition. Our long-run estimates 
suggest that the miners’ competition intensity (number of miners, competition intensity) has a 
negative impact on security outcomes of the PoW-blockchain; all long-run estimates are 
significantly different from zero in Table 4. These results suggest that a permanent increase in 
the competition intensity exercises a downward pressure on the blockchain computing capacity 
in the long-run. 

As discussed in Section 2, digital distributed ledgers such as blockchain are subject to a number 
of network externalities. When new miners enter the blockchain mining, two types of direct 
network externalities related to the blockchain security arise, one positive and one negative. 
The positive network externality implies that the blockchain security is increasing with the 
number of miners, because each additional node reinforces the chain’s security. In line with 
the previous literature (Waelbroeck, 2018), the negative network externality occurs because 
each individual miner invests in the mining-computing power, which increases both the 
individual miner’s marginal income though also mining costs, as the difficulty of the 
computational problem increases in the number of miners and their computing capacity (“hash-
power”). Increasing the difficulty of mining reduces the incentives for mining and – in the 
presence of learning by mining – increases the concentration of mining activities, which in turn 
reduces the blockchain security. Our estimates suggest that the negative network externality 
dominates of the positive network externality. Our results are in line with those of Parra-
Moyano, Reich and Schmedders (2019) who find that the probability of winning a mining 
contest increases with the miner size. This motivates miners to join mining pools to increase 

 
18 The short-run effects of electricity prices, hardware efficiency, 10-year-treasury and alternative proxies for 
competition intensity cannot be examined due to the ARDL specifications, as no lags of these dependent variables 
entered the model. 
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their probability to win the mining contest and receive reward.19 Indeed, our competition proxy 
variables are constructed based on the observed number of miners but not on the number of 
members within mining pools. And since a greater competition may imply fewer miners 
(because many individual miners join mining pools), the implied actual long-run relationship 
between the competition intensity and mining intensity may become negative. 

In the short-run, the mining competition intensity has a statistically positive impact on the 
blockchain computing capacity in all estimated models. These results also indicate that in the 
short-run, the competition among miners encourages deployment of more mining capacity in 
line with the model derived in equation (7). While in the short-run the miners’ competition 
leads to expansion of the blockchain mining capacity, in the long-run the inverse relationship 
is valid indirectly suggesting reduced competition level as individual miners have the incentive 
to join mining pools. 

6.4 Dynamics and the mean-reverting of the blockchain security 

The mean-reverting hypothesis says that, ceteris paribus, the PoW-blockchain security reverts 
back to mean in the long-run. The estimates of the error correction term – which measure the 
speed of adjustment of the short-run dynamics of mining to the long-run equilibrium path – are 
statistically significant across all models. The error correction terms vary between -0.002 and 
-0.009, implying that between 0.20% and -0.90% of the long-run disequilibrium in mining 
intensity is corrected by the short-run adjustment on the same day. In other words, the 
disequilibrium corrects at an average speed of convergence of between 0.20% and 0.90% per 
day. In terms of the duration, any deviation from the long-run equilibrium is corrected in around 
109 to 447 days. These results provide support for the mean-reverting hypothesis saying that 
in response to shocks and short-run deviations security outcomes of the PoW-blockchain revert 
back to the equilibrium security level in the long-run. 

The lagged dependent variable (proxied by hash rate and difficulty) is statistically significant 
in all estimated mining models. The coefficient estimates vary between -0.03 and -0.47. The 
relatively high values of these coefficients indicate that the temporary shocks in the mining 
computing capacity disappear over time relatively fast: in around 2 to 29 days. These results 
support the mean-reverting hypothesis that the security outcomes of the PoW-blockchain are 
sensitive to Bitcoin market outcomes in the short-run to fluctuations with instant shocks 
disappearing over a short time period (within few days). 

The 10-year-treasury variable, which is a proxy for the discount rate, has a statistically 
significant positive effect on the blockchain computing capacity. This result suggests that that 
the 10-year-treasury actually captures a miner investment competition effect, i.e. miners 

 
19 Other benefit of joining mining pools is that it creates a steady stream of income, rather than greater income but 
at lower frequency (i.e. due to lower odd of winning the mining contest) with individual mining (Liu and Wang 
2017). 
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perceive it as an alternative investment asset. As far as cryptocurrency is perceived as an 
investment asset, shocks to competing investment asset returns (including 10-year-treasury) 
are expected to impact positively miners’ choices to invest in the mining of cryptocurrency. 
Our results confirm that miners perceive cryptocurrency to be competing for investment with 
other financial assets and thus need to generate a competitive return. The return arbitrage 
among alternative potential investment opportunities implies a positive price relationship 
between cryptocurrency and alternative financial assets (Murphy 2011; Ciaian et al. 2018, 
Ciaian et al. 2021a). Thus, the positive coefficient associated with the 10-year-treasury variable 
implies that miners are motivated to invest in more computing capacity for mining when the 
returns to financial assets increase.  

 

7 Discussion and concluding remarks 

The present paper has studied the interdependencies between mining costs, mining rewards and 
blockchain security. We have attempted to answer the following questions. To what extent the 
cost of operating blockchains is intrinsically linked to the cost of preventing attacks? To what 
extent the digital ledger’s record-keeping security budgets (measured by mining rewards in a 
fiat currency nomination) of cryptocurrencies are correlated with the cryptocurrency market 
outcomes? In this paper, we have focused on the proof-of-work (PoW) blockchain, which is a 
particularly interesting blockchain to study as the involved physical resource expenditures 
provide a distinct advantage in achieving consensus among distributed miners.  

First, we have theoretically derived an equilibrium relationship between cryptocurrency price, 
mining rewards and mining costs, and blockchain security outcomes. Second, using daily 
Bitcoin data for 2014–2021 and employing the autoregressive distributed lag approach – that 
allows treating all the relevant moments of the blockchain series as potentially endogenous – 
we have provided empirical evidence about interdependencies between mining costs, mining 
rewards and blockchain security. Our results suggest that the cryptocurrency price and mining 
rewards are intrinsically linked to blockchain security outcomes. In contrast, the physical 
resource cost to write on the blockchain – the cost of operating the PoW-blockchain – is only 
weakly cointegrated with the strength of the network security; the ARDL results for mining 
costs are geographically differentiated, implying heterogeneities in variable mining costs 
across global world mining regions. 

Our main contribution to the literature is formally establishing a link between the probability 
distribution over security outcomes that permanently depend on the underlying distribution of 
cryptocurrency market outcomes and providing a supporting empirical evidence. Our results 
complement findings of this emergent literature by quantifying how the probability distribution 
over security outcomes permanently depends on the underlying distribution of cryptocurrency 
market outcomes. Due to the extremely high cryptocurrency return volatility, the PoW-based 
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blockchain security budget is exposed to high volatility and may result in a series of low-
security equilibriums and high-security equilibriums.  
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Figure 1. Bitcoin price and aggregate security spend, USD  

 

Source: coinmetric.com and studio-glass-node. Notes: Bitcoin’s cumulative miner revenue – Thermocap – is 
calculated by taking the running sum of daily miner revenue in USD. Market capitalization to Thermocap 
provides an indication of the Bitcoin’s current market value compared to the aggregate amount spent to secure 
the network. Note that, due to lags in the adjustment of mining investment, Thermocap is relatively slow 
moving and does not have the same level of volatility as the market capitalization. 

 

Figure 2. Interdependencies between bitcoin price and blockchain security  

  

Source: Conceptual framework (section 3). 
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Figure 3. Interdependencies between proof-of-work cost and blockchain security  

 

Source: Conceptual framework (section 3). 

 

Table 1. Data sources 

Variable Unit Description of variable  Source 
Dependent variable    
hash rate Hash/second Total computing capacity bitinfocharts.com 
difficulty Average difficulty per 

day 
Mining difficulty bitinfocharts.com 

Explanatory variables    
mining reward USD per block Mining reward per block 

(reward_usd/ no_bl_total) 
blockchair.com 

PoW cost: electricity 
Europe 

EUR/MWh European Electricity Index www.epexspot.com 

PoW cost: electricity 
China 

USD/kWh Chengdu's Usage Price 
Electricity Industry, USD 

www.ceicdata.com  

PoW cost: electricity N. 
America 

CAD/MWh Electricity price in North 
America 

ieso.ca 

hardware efficiency J/Giga hash Mining equipment 
efficiency – Bitcoin mining 
hardware generation (the 
most efficient device in each 
period) 

Constructed based on: Zade and 
Myklebost (2018), CBEI (2019) 

number of miners No Number of miners,  blockchair.com 
competition intensity Index Competition intensity  computed  
hhi Index Herfindahl-Hirschman index computed based on  and 

hashrate 
hhi normalised Index Normalised Herfindahl-

Hirschman index 
computed based on on  and 
hashrate 

10-year-treasury % 10-Year Treasury Constant 
Maturity Rate (DGS10) 

fred.stlouisfed.org 
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Table 2. Descriptive statistics of used data 

Variable Obs Mean Std. Dev. Min Max 
Dependent variable      
hashrate 2207 40.612 6.475 25.442 52.332 
difficulty 2207 24.028 6.923 9.581 32.709 
Explanatory variables      
mining_reward 2207 9.954 2.387 -0.692 14.713 
PoW cost: electricity Europe 2207 3.961 0.981 -6.908 5.429 
PoW cost: electricity China 2207 -2.506 0.067 -2.402 -2.409 
PoW cost: electricity N. America 2207 2.809 2.177 -6.908 6.010 
hardware efficiency 2207 0.172 3.090 -3.219 6.552 
number of miners 2207 3.068 0.934 0.000 3.984 
competition intensity 2207 -3.301 1.089 -6.908 -1.497 
hhi 2207 -1.851 0.770 -2.608 0.000 
hhi normalised 2207 -2.173 0.946 -3.176 0.000 
10-year-treasury 2207 0.893 0.229 0.315 1.428 
 
Table 3. Specification of empirical models 

 Dependent variable: hashrate  Dependent variable: difficulty 
 M1.1 M2.1 M3.1 M1.2 M2.2 M3.2 

Dependent variable       
hashrate X X X    
difficulty    X X X 
Explanatory variables       
mining reward X X X X X X 
PoW cost: electricity Europe X X X X X X 
PoW cost: electricity China X X X X X X 
PoW cost: electricity N. America X X X X X X 
hardware efficiency X X X X X X 
number of miners X X X X X X 
competition intensity X   X   
hhi  X   X  
hhi normalised   X   X 
10-year-treasury X X X X X X 

 
Table 4. Estimation results: long-run interdependencies 

 Dependent variable: hashrate Dependent variable: difficulty 
 M1.1 M2.1 M3.1 M1.2 M2.2 M3.2 

mining reward 1.398 *** 1.428 *** 1.379 *** 1.703 *** 1.848 *** 1.845*** 
PoW cost: electricity Europe -0.236 ** -0.331 ** -0.340 ** -0.137 * -0.155 * -0.183* 
PoW cost: electricity China 1.716 ** 1.206 ** 2.568 ** 1.238 * 2.857 * 3.108* 
PoW cost: electricity N. America -0.132 ** -0.214 ** -0.240 ** -0.061 * -0.120 * -0.142* 
hardware efficiency 0.839 *** 0.546 *** 0.650 *** 0.494 *** 0.237 *** 0.372*** 
number of miners -1.154 *** -2.824 *** -2.487 *** -2.112 *** -4.027 *** -3.393*** 
competition intensity -1.143 ***     -1.257 ***    
hhi   -3.596 **     -5.756 ***  
hhi normalised     -2.285 ***     -4.595*** 
10-year-treasury 2.204 ** 4.869 ** 5.994 * 2.556 * 5.675 ** 7.364* 
Error correction term            
hash rate (-1) -0.009 *** -0.008 *** -0.007 ***      
difficulty (-1)       -0.003 ** -0.004 ** -0.002** 
Speed-of-adjustment (days) 109  121  135  317  350  447 
Notes: Speed-of-adjustment is calculated based on the error correction rate. ***significant at 1% level, 
**significant at 5% level, *significant at 10% level. Empty cells indicate absence of a variable in the respective 
model.  
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Table 5. Estimation results: short-run interdependencies 

 Dependent variable: hashrate Dependent variable: difficulty 
 M1.1 M2.1 M3.1 M1.2 M2.2 M3.2 

Δ dependent variable (-1) -0.444 *** -0.441 *** -0.446 *** 0.192 *** 0.214 *** 0.202*** 
Δ dependent variable (-2) -0.469 *** -0.452 *** -0.431 *** -0.146 *** -0.148 *** -0.148*** 
Δ dependent variable (-3) -0.317 *** -0.293 *** -0.291 *** -0.039 *** -0.034 *** -0.034*** 
Δ dependent variable (-4) -0.230 *** -0.196 *** -0.203 *** -0.075 *** -0.071 *** -0.073*** 
Δ dependent variable (-5) -0.164 *** -0.143 *** -0.152 *** -0.058 ** -0.057 *** -0.056*** 
Δ dependent variable (-6) -0.099 ** -0.096 *** -0.092 *** -0.053 ** -0.047 *** -0.049** 
Δ dependent variable (-7) -0.074 ** -0.064 ** -0.064 ** -0.061 ** -0.057 ** -0.051** 
Δ mining reward -0.019 *** -0.017 *** -0.017 *** -0.001 *** -0.001 *** -0.001*** 
Δ mining reward (-1) -0.020 ** -0.034 ** -0.016 ** -0.003 ** -0.002 * -0.002* 
Δ mining reward (-2)       0.001 * 0.001 * 0.001* 
Δ mining reward (-3)       -0.014 * -0.015  -0.013* 
Δ mining reward (-4)       -0.015  -0.015  -0.015 
Δ PoW cost: electricity China -1.258 *** -1.319 *** -1.181 ***      
Δ number of miners         0.002 ** 0.003** 
Δ number of miners (-1)         0.077  0.076 
Δ number of miners (-2)         0.092  0.094 
Δ competition intensity 0.010 **     0.001 **    
Δ competition intensity (-1) 0.063 **     0.033 *    
Δ competition intensity (-2) 0.041 *     0.033     
constant 0.292 ** 0.350 ** 0.383 ** 0.046 ** 0.074 ** 0.103** 
Notes: ***significant at 1% level, **significant at 5% level, *significant at 10% level. Empty cells indicate 
either absence of a variable in the respective model or the coefficient or the variable is not selected in the 
estimation; Δ is difference. 

Table 6. Development of the PoW mining hardware efficiency 

Type Hardware name Date J/Th 
CPU ARM Cortex A9 3 Oct 2007 877,193 
GPU ATI 5870M 23 Sep 2009 264,550 
FPGA X6500 FPGA Miner 29 Aug 2011 43,000 
ASIC Canaan AvalonMiner B1 1 Jan 2013 9,351 
ASIC KnCMiner Jupiter 5 Oct 2013 1,484 
ASIC Antminer U1 1 Dec 2013 1,250 
ASIC Bitfury BF864C55 3 Mar 2014 500 
ASIC RockerBox 22 Jul 2014 316 
ASIC ASICMiner BE300 16 Sep 2014 187 
ASIC BM1385 19 Aug 2015 181 
ASIC PickAxe 23 Sep 2015 140 
ASIC Antminer S9-11.5 1 Jun 2016 98 
ASIC Antminer R4 1 Feb 2017 97 
ASIC Ebang Ebit 10 15 Feb 2018 92 
ASIC 8 Nano Compact 1 May 2018 51 
ASIC Antminer S17 9 Apr 2019 36 
ASIC Antminer S19 Pro 23 Mar 2020 30 

Source: Song and Aste (2020)   

 

 


