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         1.  Introduction 

 

         Since 1950, the certainty theory of consumer choice has provided all the fundamental   

          ideas underlying the study of consumer choice in applied econometrics. 

         Econometricians use the theory to formulate their econometric models, to put 

          restrictions on the values of the models’ parameters, and to evaluate the theoretical and 

          statistical adequacy of the respective models.   Prominent examples of econometric 

         models of consumer choice are J. R. N. Stone’s (1954) Linear Expenditure System,  

         H. Theil and A. P. Barten’s (1965 and 1969) Rotterdam Model, L. R. D. Christensen,    

         D. W. Jorgenson, and L. J. Lau’s (1975) Translog Model, and A. S. Deaton and  

          J. Muellbauer’s (1980) Almost Ideal Demand System. 

            In Section 2, I describe the salient characteristics of the certainty theory 

of consumer choice; e.g., the homogeneity property of a Marshallian demand 

function and the symmetry and negative semi-definiteness property of a 

Hicksian demand function.  In addition, I describe the way the mentioned 

empirical analyses use the theory, and discuss the import of their results; e.g., 

why the estimated Marshallian demand function is not homogeneous of degree 

zero, and why the estimated Hicksian demand function does not satisfy the 

theory’s symmetry condition.   

          The failure of the certainty theory of consumer choice calls for a new 

theory.  In Section 3, I describe the salient characteristics of such a theory – the 

uncertainty theory of consumer choice as introduced in Stigum 1969 and 1972.  

The new theory is a natural extension of the certainty theory.  Yet, the 

properties of its Marshallian and Hicksian demand functions are very different 
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from their properties in the certainty theory.  For example, a consumer’s 

Marshallian demand function need not be homogeneous of degree zero in 

prices and income.  In addition, its value varies with changes in prices, not just 

because relative prices and the consumer’s real income change, but also 

because the consumer’s price expectations change. Similarly, a consumer’s 

Hicksian demand function need not be homogeneous of degree zero in prices, 

and its matrix of partial derivatives with respect to prices need not be 

symmetric.  In addition, the function varies with changes in prices, not just to 

adjust to changes in relative prices - like the Hicksian demand function in the 

certainty theory.  The Hicksian demand function in the new theory varies with 

prices, also, because the consumer’s real income and price expectations change 

with the change in prices.  The properties of the uncertainty version of the 

consumer’s cost function are, also, very different from its properties in the 

certainty theory. For example, the function in the new theory need not be 

concave and linearly homogeneous in prices.1   

                    I conclude the paper in Section 4 by presenting an empirical analysis of an 
 
          uncertainty version of Stone’s Linear Expenditure System.  In the given empirical  
 
           
 
          Note 1: In Chapters 10 and 30 of Stigum 1990, the theory of consumer choice 

          under certainty and uncertainty is developed for consumers with continuous    

          utility functions.  To simplify my arguments in Sections 2 and 3 of the paper, I 

          apply relevant details of the two theories assuming that the pertinent 

          consumers’ utility functions are twice differentiable.  My references and 

          examples show that there are consumers whose utility functions in each case 

          satisfy my assumptions.        
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          context, the uncertainty version of Stone’s System is empirically relevant.  The result is 
 
          interesting, and the arguments that establish it involve a novel and intriguing interplay 
  
          between theory and data in applied econometrics.  This interplay adds new insight into 
 
          the applied-econometric consequences of T. Haavelmo’s idea of identifying the values 
 
          of theoretical variables with the true values of pertinent data variables.  It, also, helps 
 
          me determine how a consumer in an empirically relevant uncertainty version of J.R.N. 
 
          Stone’s Linear Expenditure System reacts to changes in prices and net worth. 
 
 

 

           

          2.  The Certainty Theory of Consumer Choice in Applied Econometrics 

  

 J. R.  Hicks’ Value and Capital (cf. Hicks, 1939, pp. 11- 52 and 305 − 314) 

and P. A. Samuelson’s Foundations of Economic Analysis (cf. Samuelson, 

1947, pp. 90 -124) provide a detailed account of the certainty theory of 

consumer choice.   In its intended interpretation, the theory is about a consumer 

- an individual or a family living together - who faces a price vector, p € R++n , 

and is to choose a vector of commodities, q € R+n, that maximizes the value of 

his utility function, U(∙): R+n →R+, subject to his budget constraint, {q € R+n: 

pq  ≤  A}.  ∙Here A € R++ denotes the consumer’s net worth, and in R+n the 

utility function is continuous, strictly quasi-concave, and increasing.  In 

addition, “in a wide region” (cf. Samuelson 1947, p. 29) U(∙) is twice 

continuously differentiable, and the matrix, {∂2U(q)/∂qi∂qj}is invertible, 

symmetric, and negative definite. To simplify my deliberations in this section, I 

take Paul Samuelson’s wide region to be all of R++n. 
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2.1  The Marshallian demand function 

In the certainty theory of consumer choice, the consumer’s behavior can be 

described by a functional equation, q = f(p, A), where f(∙): R++n+1 → R+n,  is a 

differentiable function with many interesting properties.  At each value of      

(p, A) € R++n+1, f(p, A) equals the vector  in R+n at which U(∙) attains its 

maximum value subject to the condition, pq ≤ A.  In addition, f(∙) has three 

properties that provide a basis for statistical tests of the empirical relevance of 

the theory:  For all (p, A, λ) € R++n+2,  

 

     (1)  Adding up:  pf(p, A) = A – i.e., the value of purchased commodities add 

up to the given net worth;    

     (2)  Homogeneity:  f(λp, λA) = f(p,A) – i.e., f(∙) is homogeneous of degree 

zero; and  

     (3)  Symmetry and negative semi-definiteness:  ∂fi(p, A)/∂pi  + qi∂fi(p,A)/∂A 

<  0, i = 1,…,n,  and the matrix,{∂fi(p, A)/∂pj  + qj∂fi(p,A)/∂A} with i,j = 1,…,n, 

is symmetric and negative semi-definite.  

 

Econometricians refer to f(∙) as the consumer’s Marshallian demand function.   

             The Marshallian demand function has a huge family of models.  An 

interesting subfamily of models of f(∙) is J. R. N. Stone’s Linear Expenditure 

System.  It contains 2n parameters, b € R+n,  and c € R+n, where b is a vector of 

constants that sum to one, and c is a vector of commodities to which the 

consumer in some sense is committed (cf. Stone 1954, p. 512).  The pair, (b, c), 

combines with q, p, and A to form Stone’s econometric model, 

    qi = ci + bi[(A − pc)/pi], i = 1,…,n;  ∑1≤i≤n bi = 1, and  0 ≤ pc < A.            (1)           
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The two conditions on b and c ensure that Stone’s Linear Expenditure System 

makes sense, and that it has the adding-up and homogeneity properties of a 

Marshallian demand function.  In addition, it is true that there are models of the 

consumer’s utility function; e.g., 

U(q) = ∑1≤i ≤ n ailog(qi −ci), with q € R+n, ai  € R++, and 0<ci<qi, i = 1,…,n,    (2)            

for which Stone’s Linear Expenditure System is a Marshallian demand 

function.  That goes to show that one can add conditions on the coefficients in 

(1) so that the system also satisfies the symmetry and negative semi-definite 

property of a Marshallian demand function.  Those conditions are complicated.  

Stone spells them out for the symmetry property on pp. 513-514 in Stone 1954. 

 

2.2  The Hicksian demand function 

The Marshallian demand function itself is not symmetric.  The symmetry and 

negative semi-definite property of f(∙) claims that a compensated version of f(∙) 

is symmetric.  This compensated version, h(∙), econometricians refer to as the 

Hicksian demand function.  It satisfies the conditions:  h(∙): R++n+1 →R+n, and 

at each value of (u, p) with u € R++ and p € R++n, h(u, p) equals the q at which 

pq attains its minimum value in the set,  {q € R+n: U(q) ≥ u}.  In addition, h(∙) 

is differentiable in R++n+1, homogeneous of degree zero in p, and symmetric in 

the sense that it satisfies the conditions,  

           ∂hi(u,p)/∂pj = ∂hj(u,p)/∂pi for all, i,j = 1,…,n, and (u,p) € R++n+1.    

Finally, for all (u, p, A) € R++n+2 at which u = U(f(p, A)), it is a fact that 

                         h(u, p) = f(p, A),  ph(u, p) = A,                                                  

           ∂hiu, p)/∂pj = ∂fi(p, A)/∂pj +  qj∂fi(p,A)/∂A, i,j = 1,…,n, and  

   the matrix, { ∂hi(u, p)/∂pj }, is symmetric and negative semi-definite.     (3) 
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The equations in (3) explicate in what sense the Hicksian demand function, 

h(∙), is a compensated version of the Marshallian demand function, f(∙).  

 

2.3  The cost function 

The function, c(∙): R++n+1 → R++ , which at each (u,p) € R++n+1 satisfies the 

equation, c(u,p) = ph(u,p), econometricians refer to as the consumer’s cost 

function.  The function has many models and many interesting properties.  For 

example, the following function is the cost function of a model of Stone’s 

Linear Expenditure System with utility function as specified in equation (2):  

For all (u,p) € R++n+1, 

                   c(u,p) = pc + ug(a, c)∏1 ≤ j ≤ n pβj,                                   (4)                                                      

where βj = (aj/Σ1 ≤ k ≤ n ak), j =1,…,n.,  and where g(∙): R++2n → R++ is a 

differentiable function of the parameters in equation (2).  As to the properties 

of a consumer’s cost function, it is differentiable, concave, and homogeneous  

of degree one in p, and satisfies the equations, 

        ∂c(u, p)/∂pi = hi(u,p) for all (u,p) € R++n+1 and all i = 1,…,n.              (5)                           

In addition, it provides the theoretical foundation on which A. Deaton and J. 

Muellbauer construct their Almost Ideal Demand System.  

          The consumer’s cost function, c(∙), in the Almost Ideal Demand System 

satisfies the following equation:  For all (u,p) € R++n+1.   

logc(u,p)=a0 +∑1≤k≤n aklogpk+(1/2)∑1≤k≤n∑1≤j≤n γ*kjlogpklogpj+uβ0Π1≤k≤n pkβk  (6)            

When this function is a model of the cost function of a consumer, then for all 

(u, p) € R++n+1,  ∂c(u, p)/∂pi = qi,  i = 1, …, n, where q = (q1, …, qn) is the 

vector in R+n at which pq  attains its minimum value in the set, {q € R+n: U(q) ≥ 

u}.    In addition, for all (u, p) € R++n+1, 
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         ∂logc(u, p)/∂logpi = wi = ai + ∑γijlogpj + βiuβ0Π1≤k≤n pkβk, ,              (7)                                

where wi = piqi/c(u, p), and γij = (1/2)(γ*ij + γ*ji).  Now, for a utility-

maximizing consumer, his net worth equals the value of his cost function.  

Hence, if one substitutes A for c(u,p) in equation (6), solves the equation for u, 

and substitutes the solution in (6) for the u in equation (7), one ends up in (8) 

with the budget-share form of a Hicksian demand function in the Almost Ideal 

Demand System: 

         wi = ai + ∑1≤j≤n γijlogpj + βilog(A/P), i = 1, …, n; and (p,A) in R++n+1    (8)         

where             

               logP = a0 + ∑1≤k≤n aklogpk + (1/2)∑1≤k≤n∑1≤j≤n γ*kjlogpklogpj.                             

          Deaton and Muellbauer think of the logP in (8) as the logarithm of an 

appropriately chosen price index.  In addition, they observe that a model of the 

equations in (8) can be a Hicksian demand function of a consumer’s utility  

function only if its parameters ensure that the model has the salient properties 

of h(∙): The model has the adding-up property only if  ∑1≤i≤n ai = 1,  ∑1≤i≤n γij = 

0, for all j = 1, …, n, and  ∑1≤i≤n βi = 0; it has the homogeneity property only if   

∑1≤j≤n γij = 0; it has the symmetry property only if  γij = γji, for i,j = 1, ..., n; and 

it has the negative semi-definite property only if the matrix of functions,          

E = {eij}, where    

                   eij = γij + βiβjlog(A/P) − wiδij + wiwj , i,j = 1, …, n.                  (9)                                       

is negative semi-definite.  Here δij is the Kronecker delta that is 1 if i = j  and 0 

otherwise (cf. equation (14) and pertinent remarks on p. 316 in Deaton and 

Muellbauer 1980).  
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2.4  The empirical analyses 

In an empirical analysis a user of Stone’s linear expenditure system or a user of 

Deaton and Muellbauer’s almost ideal demand system sets out to test the 

empirical relevance of the certainty theory of consumer choice.  In doing that, 

he faces many serious problems two of which concern the references of his 

observations and the constraints on his model’s parameters.   For example, 

Stone analyses a system of six commodity groups. One of the groups contains 

meat, fish, dairy products, and fats.  Another group contains household running 

expenses, non-durable household goods, and domestic services.   Deaton and 

Muellbauer analyze a system of eight groups.  One of these groups is called 

foods.  Another group is called transport and communications services.  How is 

one to define q and p for such commodity groups?  The theory does not specify 

what the components of q and the components of p measure.  Consequently, 

Stone and Deaton and Muellbauer –  in the spirit of Trygve Haavelmo’s 1944 

Treatise (cf. Haavelmo 1944, pp. 6-8)  – can identify the values of their 

theoretical variables with the true values of the prices and quantities that their 

British data provide, and assume that they have accurate observations of the 

true values of the pertinent prices and quantities.  Then the given British data 

end up constituting the context in which the authors test the empirical 

relevance of the certainty theory of consumer choice. 

             The constraints on their models’ parameters pose a problem for both 

Stone and Deaton and Muellbauer.  Should the conditions on b and c in 

equation (1) and the conditions on ai, γij, βi, and eij in equations (8) and (9) be 

integral parts of the respective econometric models?  Stone imposed the 

restrictions when he estimated the values of b and c.  Deaton and Muellbauer  
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tried both ways.  Whether their choices made a difference as to their tests of the 

empirical relevance of the certainty theory of consumer choice is uncertain.   

Stone’s analysis provides no answer, and Deaton and Muellbauer in both 

analyses reject the theory. The values of the estimated parameters are such that 

the resulting models of the equations in (8) do not satisfy the homogeneity and 

symmetry property of a Hicksian demand function. 

                Deaton and Muellbauer are not the only ones who have rejected the 

certainty theory of consumer choice.   For example, Barten used the Rotterdam 

model to analyze Dutch consumers’ choice of nine commodity groups during 

the period 1922-1939 and 1949-1962.  He found that “the homogeneity 

condition has to be rejected” and that “the composite hypothesis of the 

condition of homogeneity and the symmetry condition must also be rejected” 

(Barten 1969, p.78).  Deaton used the Rotterdam model to analyze British 

consumers’ choice of nine commodity groups during the period 1900-1914, 

1921-1039, and 1953-1970.  He ended up rejecting both the homogeneity 

condition and the symmetry condition.  Finally, Christensen, Jorgenson, and 

Lau used their own Translog model to analyze U.S. consumers’ choice of three 

commodity groups during the period 1929-1972.  They conclude “that the 

theory of demand is inconsistent with the evidence.”  In all these cases the 

authors estimated both unrestricted and restricted versions of their econometric 

models and based their conclusion as to the empirical relevance of the 

restricted versions of their econometric models on a large-sample likelihood 

ratio test. 
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2.5  Concluding remarks 

         The authors of the mentioned articles suggest that measurement errors of their 

         variables, too few explanatory variables, and misspecification of the dynamics 

         of the data generating process are possible causes of the failure of the certainty 

         theory of consumer choice in their empirical analyses.  I believe that the reason 

         for the theory’s failure is much more fundamental.  Consumers live in an 

         uncertain world, and the certainty theory of consumer choice is unfit to analyze    

         the problems of consumer choice under uncertainty.   

                  In Section 3, I will discuss an uncertainty theory of consumer choice that 

         was introduced in Stigum 1969, 1972, and 1990.   This uncertainty theory is a 

         natural extension of the certainty theory to a theory of consumer choice under 

          uncertainty.  Even so, in the new theory the Marshallian demand function need 

          not satisfy the homogeneity and symmetry conditions stated above. In 

          addition, the definitions and the imports of both the Hicksian demand function 

          and the cost function in the new theory are controversial.  

 

 

       3.    The Uncertainty Theory of Consumer Choice in Applied Econometrics 

 

It is a fact that Bernt Stigum’s uncertainty theory of consumer choice is a 

natural extension of the certainty theory.  To see why, consider the following 

subfamily of models of the certainty theory in which n = 2 and U(∙) is an 

integral; i.e., in which there exists a twice differentiable function,                

V(∙):R+→R+, and a cumulative probability distribution, F(∙):R+→[0, 1], that 

satisfy the conditions:  
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    V’(∙) >0, V’’(∙) < 0,  ∫(0, ∞)dF(r) = 1,  and  U(q1, q2) = ∫(0, ∞)V(q1 + q2r)dF(r).  

In addition, assume that p = (1, p2), think of q1 and q2, respectively, as so many 

units of the unit of account and as so many units of a risky asset, take p2q2 to 

record the value of the consumer’s investment in q2, and assume that q2r 

measures the value of q2 the “next period”. With this subfamily of models of 

the certainty theory one can develop all of Kenneth Arrow and John Pratt’s 

theory of choice among safe and risky assets (see Arrow 1965 and Pratt 1964).  

Chapters 10 and 12 in Stigum 1990 show how. 

                Arrow and Pratt’s theory is a very interesting theory of choice under 

uncertainty.  Yet, for the purposes of this paper, it has one serious defect.  The 

probability distribution of the next period prices of q, (1, r), is independent of 

the current price of q.  Suppose that the distribution of (1,r) depends on the 

value of (p1, p2).  Then the consumer’ utility function will receive two more 

arguments as witnessed in the equations in (10): 

 U(p1,p2,q1,q2) = ∫(0, ∞)V(q1 + q2r)dF(r│p1,p2), and ∫(0, ∞)dF(r│p1,p2) = 1.     (10)                         

The change looks innocuous, but it is not.  Arrow and Pratt’s theory is not valid 

with a utility function and a conditional probability distribution like the one in 

(10).  

 

3.1  Consumer choice under uncertainty  

 The utility function in (10) is like a prototype of the utility function in the new 

theory of consumer choice under uncertainty.  Think of a consumer who has a 

finite planning horizon – say T periods - and suppose that he orders T 

commodity vectors, qi € R+n, i = 1, …, T, and a period-T risky asset, MT , 

according to the values of an increasing, strictly concave, and a.e. twice 



13 
 

continuously differentiable function, V(∙):R+nT+1 →R+.   In addition, suppose 

that he has observed the values of the first-period prices, (p1,pM1) € R++n+1, and 

that he -  conditioned on the observed value of (p1,pM1) - has a well-defined 

subjective probability distribution of the vector, ((p2,pM2)…, (pT, pMT)), where 

(pi,pMi) € R++n+1, i = 2, …, T.  Finally, suppose that he chooses his first-period 

commodity vector, q1, his first-period investment in risky assets, M1, and his 

plans for purchases of future commodities and for investments in risky assets 

so that he maximizes the expected value of V(q1, …, qT, MT) subject to the 

budget constraints that he faces in each period. Under reasonable conditions on 

the consumer’s subjective probability distribution, one can show that there 

exists a function,   

                                     U(∙):R++n+1  ×  R+n+1 →R+,                                   (11) 

such that the consumer in the first period – conditional on the observed values 

of p1 and pM1 – chooses a q1 and an M1 that will  

                          maximize the value of U(p1,pM1,q1,M1)                           (12) 

subject to his first-period budget constraint, 

                                  {(q1,M1) € R+n+1:p1q1+pM1M1 ≤ A}.                       (13) 

Here A is his first-period initial net worth, and U(∙) is continuous in 

(p1,pM1,q1,M1), and increasing and strictly concave in (q1, M1).  For the 

purposes of this paper, I assume that U(∙) is twice differentiable in 

(p1,pM1,q1,M1).  

                      Here an example may be of help.  The example describes a two-period model of  

         the theory of consumer choice under uncertainty that I sketched above.  In this context 

         the model is interesting because it constitutes a two-period uncertainty version of  

         Stone’s Linear Expenditure System. 
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       Example 1  In this example, T = 2, n=2, q1 = (x1, x2), q2 = (y1, y2), and Mi =  μi, i = 1,2.   

       In addition, P1 = (p11, p12, p13), P2 = (p21, p22, p23),  Pi € R++3, i = 1,2, and the 

       coefficients that appear in the consumer’s utility function, a, b, c, d, e, α, β, δ, γ, are all  

       positive.   Finally, the consumer’s utility function is as follows: 

     V(q1,q2,M2)=αlog(x1–δ)+βlog(x2–γ)+[alog(y1–d)+blog(y2–e)+ clogμ2] 

The two budget constraints are  

               p11x1 + p12x2 + p13μ1 ≤ A, and p21y1 + p22y2 + p23μ2 ≤ μ1.  

For a given value of P2, the maximum value of the consumer’s second-period  

utility is given in equation (14): 

        B(P2) + (a+b+c)log(μ1 – p21d – p22e), with   μ1 – p21d – p22e > 0,      (14)                                           

where 

    B(P2)=alog((a/p21)/(a+b+c))+blog((b/p22)/(a+b+c))+clog((c/p23)/(a+b+c))                                             

The components of P2 in (14) are random variables whose probability 

distribution depends on the observed value of P1.  Consequently, the U(∙) that 

the consumer is to maximize in the first period is as follows,    

      U(p1,pM1,q1,M1) = αlog(x1 – δ) + βlog(x2 – γ) +  

                               E[B(P2) + (a+b+c)log(μ1 – p21d – p22e) │P1],           (15) 

where E[(∙)│P1] denotes the conditional expectation of (∙) given the observed 

value of P1.       

 

3.2  The Marshallian demand function 

The Marshallian demand function in the uncertainty theory of consumer choice 

is a function, F(∙):R++n+2→ R+n, that for each (p1, pM1,A) € R++n+2 records the 

value of the vector, (q1, M1) € R+n+1, at which U(p1,pM1, ∙), attains its maximum 
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value in the set,{(q1,M1) € R+n+1:p1q1 + pM1M1 ≤ A}.2   

            The Marshallian demand function has many models, and the properties 

of the models depend on the roles one assigns to the components of (p1, pM1) in 

U(p1,pM1, ∙).  To each subfamily of models of U(p1,pM1, ∙) corresponds a 

subfamily of models of the Marshallian demand function.  In one subfamily of 

models of U(p1,pM1, ∙), the pair, (p1, pM1)  may assume an arbitrary fixed value 

of current period prices that carries no information about future prices.  That 

will be the case when the probability distribution of future prices is 

independent of the values of current-period prices.  In another subfamily, 

U(p1,pM1, ∙) will vary with (p1, pM1), but its indifference surfaces will not since 

they in the given subfamily are independent of (p1,pM1).  I give an example of 

such a case in Example 2 below. There may, also, be subfamilies of models of 

U(p1,pM1, ∙) in which its (p1, pM1) arguments  assume different values when the  

observed (p1,pM1) vary over a subset of  R++n+1 - say B - and assume an arbitrary 

 

 

Note 2:  In his 1968 article on consumer behavior, Peter J. Kalman introduced 

prices in the consumer’s utility function.  His aim was to extend the certainty  

         theory of consumer choice so that it would allow for two possibilities that  

         seemed important to him.  One was that a consumer may judge the quality 

         of a commodity by its price.  The other was that a consumer’s demand 

         function need not be linearly homogeneous in prices and money income.  

         Kalman’s references for the first possibility were T. Scitovsky 1945,  

         L.Thurstone 1931, and T. Veblen 1912.  His reference for the second 

         possibility was J. Marschak 1943. 
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constant value when the observed values of (p1, pM1) belong to the complement 

of B.  The subfamily of Marshallian demand functions that the utility function 

in (15) determines may be like that.   

 

          Example 2  In this example, T = 2, n=2, q1 = (x1, x2), q2 = (y1, y2), and  

          Mi =  μi, i = 1,2.  In addition, P1 = (p11, p12, p13), P2 = (p21, p22, p23),  Pi € R++3, 

             i = 1,2. Finally, the consumer’s utility function is as follows: 

                    V(q1,q2,M2) = x1∙x2∙y11/3∙y21/3∙μ21/3.                                     (16) 

The two budget constraints are  

            p11x1 + p12x2 + p13μ1 ≤ A, and p21y1 + p22y2 + p23μ2 ≤ μ1.   

For a given value of P2, the maximum value of the V(q1,∙) in (16) subject to the 

second-period budget constraint is given in equation (17): 

V(q1, (μ1/3p21)1/3, (μ1/3p22)1/3, (μ1/3p23)1/3) = (1/27(p21∙ p22∙ p23))1/3x1∙x2∙μ1.  (17) 

        The components of P2 in (17) are random variables whose probability 

distribution depends on the observed value of P1.  Consequently, the U(∙) that 

the consumer is to maximize in the first period is as follows,    

         U(p1,pM1,q1,M1) = E[(1/27(p21∙ p22∙ p23))1/3│P1]∙ x1∙x2∙μ1,                  (18) 

         where E[(∙)│P1] denotes the conditional expectation of (∙) given the observed 

         value of P1. 

                  The family of utility functions that the utility function in (18) determines 

          is a subfamily of models in which the members share one and the same family 

          of indifference surfaces.   Moreover, the Marshallian demand functions are as 

          follows: x1 = A/3p11:  x2 = A/3p12; and μ = A/3p13. 
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         One obtains a Marshallian demand function by solving the necessary 

conditions for a constrained maximum of a utility function, U(p1,pM1, ∙):  

               ∂U(p1,pM1, q1,M1)/∂q1i  = λp1i, i = 1,…, n;  

               ∂U(p1,pM1, q1,M1)/∂M1 = λpM1; and 

               p1q1+pM1M1 =A,                                                                     (19)                                                 

where λ is the Lagrange multiplier. The properties of U(p1,pM1, ∙) ensure that 

the Marshallian demand function at ( p1,pM1,A),  F( p1,pM1,A), is well defined. 

In this paper I assume that F(∙) is differentiable.  

                   The uncertainty version of f(∙) satisfies the adding-up condition of the 

         certainty version.  Whether it satisfies the homogeneity condition, depends  

         both on the consumer’s price expectations and on his utility function.  For 

         example, it satisfies the homogeneity condition if the consumer’s probability 

         distribution of future prices is independent of current-period prices, or if his 

         utility function is like the utility function in Example 2.  However, there are 

         models of the uncertainty version of Stone’s Linear Expenditure System that do 

         not satisfy the homogeneity condition.  Whether the uncertainty version of the         

        Marshallian demand function satisfies the symmetry condition of the certainty      

        version, is a question that I will bring up later in my discussion of the 

        uncertainty version of the Hicksian demand function. 

 

      3.3  The expectations effect 

       The Marshallian demand function in the present theory has properties that  

        the certainty theory’s Marshallian demand function does not have.  The idea 

       behind Figure 1 is to exhibit one of these properties – the expectations’ effect on 

       consumer choice of a change in current-period prices.  In the figure, A and B, 
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       respectively, are names of the vectors, (q10,M10) and (q11,M11), at which 

       U(p10,pM10,∙) and U(p11,pM10,∙) attain their maximum values in the sets,  

       {q1,M1) € R+n+1:p10q1 + pM10M1 ≤ A} and {(q1,M1) € R+n+1:p11q1 + pM10M1 ≤A}. 

 

                                                     Figure 1 

                     The Effect on (q11,q12) of a Change in the Value of p11               

                 

 q12                                                  

                                                    U(p10,pM10,q12,M12) 

                                     B                        
                                                                 U(p11,pM10,q11,M11)                                                                      

                                                                                                                   
                                 
                                    A                              E 
                                                                                            
                                              C                                                     

                                                                          U(p10,pM10,q10,M10)                                                             
                                                                                                                                                                      
              
                                                                                                               q11 
                                                                                                                                                                      

        

       In addition, U(p10,pM10,q10,M10), U(p11,pM10,q11,M11), and U(p11,pM10,q12,M12) 

       are, respectively,  names of the indifference curves going through A, B, and E.  

       The figure illustrates how one gets from A to B.  Keeping the current prices, 

        p10,pM10, fixed in U(∙), the standard substitution and income effects of a  

        change in prices from (p10,pM10) to (p11,pM10), moves the equilibrium in A, first, 

        to the equilibrium in C, and then, to the equilibrium in E.   When the values of  

        the prices in U(∙) change as well, the expectations effect moves the equilibrium 

        in E to the equilibrium in B.   

           Before I delineate the mathematical arguments that underlie Figure I, a 
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comment about the generality of the situation that the figure portrays is 

necessary.  Certainly, when the probability distribution of future prices is 

independent of the observed current-period prices, the equilibrium in B 

coincides with the equilibrium in E.  The same is the case when the consumer’s 

utility function is like the one in Example 2.  This is so, because, then, the price 

change does not affect the consumer’s indifference curves.  These examples 

notwithstanding, I believe that the idea behind Figure 1 is valid for most 

applied-econometrics analyses in our uncertain world.  Therefore, in my 

mathematical deliberations I will argue as if the exceptions do not exist.            

            To derive the mathematical arguments that underlie Figure 1, it is 

necessary to establish salient characteristics of the derivatives of F(∙) with 

respect to p1, pM1, and A.    For that purpose, I let q1n+1 be M1, and p1n+1 be pM1, 

and I let Ux,y  = ∂2U(p1,pM1, ∙)/∂x∂y, where x and y vary over q1s, M1, p1s , and 

pM1. Then, it follows by standard arguments from the equations in (19) - the 

necessary conditions for a constrained maximum of U(p1,pM1,∙) -  that 

                        ∂Fi(p1,pM1,A)/∂p1j =  

  D-1[λ Dji– q1jD(n+2)i] – D-1∑1≤k≤n+Dki∂2U(p1,pM1,q1,M1)/∂q1k∂p1j, i,j = 1,…, n+1,                                      

                        ∂Fi( p1,pM1,A)/∂A = D-1 D(n+2)i , i = 1,..., n+1.     (20)                                                           

In these equations, λ is the Lagrange multiplier,  

                   

                                         Uq11,q11        Uq11,q12  .... ....    Uq11,q1n        Uq11,M1     −  p11    

                                                                   ..........                  …….                                ……..                 ……….              

D = determinant of           Uq1n,q11        Uq1n,q12  .... ....    Uq1n,q1n            Uq1n,M1    −  p1n             

                                          Uq1n+1,q11     Uq1n+1,q12 .... .... Uq1n+1,q1n      Uq11,M1    −p1M1 

                                               p11              p12      .... ....      p1n            p1M1         0 
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and Dij is the cofactor of the ijth element in the matrix of D.   

            From the equations in (20) it follows that a change in a price - say p1j - 

has three effects on each of the components of F(p1,pM1,A).  The effects on 

Fi(p1,pM1,A) are   

                           I. a Substitution Effect:      λD-1Dji;  

                II.  an Income Effect:  – q1j D-1D(n+2)i; and                                                                                   

                         III. an Expectations Effect:    – D-1∑1≤k≤n+1 Dki∂2U(∙)/∂q1k∂p1j .                           

Since the entries in D concerning prices are fixed initial values of the p1j, j = 

1,…,n and pM1, the substitution and income effects are like the substitution and 

income effects in the certainty theory of consumer choice.  The substitution 

effect moves the equilibrium in A in Figure 1 to C. The income effect moves 

the equilibrium in C in Figure 1 to E.   When the prices in the utility function 

change, the indifference curves of U(∙) change in accord with the resulting 

change in the consumer’s expectations.  Such a change moves the equilibrium 

in E in Figure 1 to the equilibrium in B in accord with the mathematical 

description of the expectations’ effect.   

           The next example will show what the expectations effect looks like in 

the uncertainty version of Stone’s Linear Expenditure System. 

 

 Example 3  In the uncertainty version of Stone’s Linear Expenditure System, 

the utility function to be maximized in the first period is 

             U(p1,pM1,q1,M1) = αlog(x1 – δ) + βlog(x2 – γ) +  

                                      E{B(P2) + (a+b+c)log(μ1 – p21d – p22e) │P1}. 

The necessary conditions for a maximum of this function subject to the budget 
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constraint, p11x1 + p12x2 + p13μ1 ≤ A, are as follows: 

                       α/(x1−δ) = λp11; β/(x2−γ) = λ p12;  

   E[(a+b+c)(μ1 – p21d – p22e)−1│P1 ] = λp13; and p11x1 + p12x2 + p13μ1 = A,  

 where λ is the Lagrange multiplier.   

                 One can use the necessary conditions for a maximum to determine 

how the consumer’s demand for x1 changes when p11 changes.  By standard  

      

   − α/(x1−δ)2           0                               0                                        −p11 

         0             −β/(x2−γ)2                      0                                          −p12 

                   0                    0            − E[(a+b+c)(μ1 – p21d – p22e)−2│P1 ]    −p13           , 

         p11                     p12                            p13                                           0                                         

           

          arguments - with D being the determinant of the matrix above, with Dij,  

          i,j = 1,…,4 being the cofactor of the ijth element of this matrix, and with 

∂/∂p11E[∙│P1 ] being the partial derivative of E[∙│P1 ] with respect to the p11-

the first component of P1 - one finds in this case that   

                         ∂F1(p11,p12, p13,A)/∂p11 =  

     D−1[λD11 − x1D41] − D−1∂/∂p11E[(a+b+c)(μ1 – p21d – p22e)−1│P1 ]D31,    (21)     

       But if that is so, then in the uncertainty version of Stones econometric model the 

       effect on the demand for x1 when its price changes, can be analyzed in terms of 

       three effects,  

                            a substitution effect , λD−1D11,  

                            an income effect,  − x1D−1D41, and  

     an expectations effect,  − ∂/∂p11E[(a+b+c)(μ1 – p21d – p22e)−1│P1 ]D−1D31. 

The expectations effect is missing in Stone’s empirical analysis 
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3.4  The Hicksian demand function 

         There are many ways to define the uncertainty version of a Hicksian demand 

          function.  I will choose a way that goes with the uncertainty version of the 

          Marshallian demand function that I described above.   

                         The Hicksian demand function in the uncertainty theory of consumer 

          choice is a function, 

                              H(∙): R+ × R++n+1→ R+n+1,                                       (22) 

        that for each u € R+ and (p1, pM1) € R++n+1 with (u,p1,pM1) €  R+ × R++n+1,  records 

        the value of the vector, (q1, M1) € R+n+1, at which the function, p1q1 + pM1M1,  

        attains its minimum value in the set,                      

                        {(q1,M1) € R+n+1:  U(p1, pM1, q1, M1) ≥ u}.                     (23) 

                One obtains the Hicksian demand function by solving the necessary 

        conditions for a constrained minimum of p1q1 + pM1M1 in (23).  The necessary 

        conditions for a minimum are as follows:   

              λ*∂U(p1, pM1, q1, M1)/∂q1i  = p1i, i = 1, …, n+1, and 

               U(p1, pM1, q1, M1) = u,                                                            (24)  

where λ* is the Lagrange multiplier.  Due to the properties of U(p1, pM1,∙), H(∙) is  

 well-defined at any (u, p1,pM1) €  R+× R++n+1.   It is continuous in all its arguments 

and, whenever u = U(p1,pM1, F(p1, pM1,A)), it  satisfies the conditions, 

                         H(u,p1,pM1) =   F(p1, pM1,A), and 

                          (p1, pM1) H(u,p1,pM1)  = A,                                (25)                                                       

For the purposes of this paper, I will assume that H(∙) is differentiable in all its 

arguments.   

           The uncertainty version of the Hicksian demand function differs in interesting 
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ways from the certainty version.  To see how, it is necessary to study properties of the         

derivatives of H(∙).  For that purpose, let D* and D*ji, j,i = 1,…,n+1, be the                  

 

 

                 λ*Uq11,q11         λ*Uq11,q12  ....       λ*Uq11,q1n+1       ∂U(∙)/∂q11     

                            ….                            …                                            …                              … 

                       λ*Uq1n+1,q11        λ*Uq1n+1,q12  ....    λ*Uq1n+1,q1n+1    ∂U(∙)/∂q1n+1       

                ∂U(∙)/∂q11         ∂U(∙)/∂q12    ....   ∂U(∙)/∂q1n+1                 0 

          

determinant and jith cofactor of the matrix above.  Then it follows by standard 

arguments from the constrained necessary minimum conditions in (24) that 

                              ∂Hi(u,p1,pM1)/∂p1j =  

 D*−1[D*ji – ∂U(∙)/∂p1j D*(n+2)i] – D*−1∑1≤k≤n+1D*kiλ*∂2U(∙)/∂q1k∂p1j, i,j = 1,…,n+1.                                           

                     ∂Hi(u,p1,pM1)/∂u = D*−1 D*(n+2)i .                                    (26)   

             It is interesting to see how these equations differ from the equations in (20) 

that describe the derivatives of the Marshallian demand functions. If one multiplies 

the last column and last row of D* by λ*, the resulting determinant and jith cofactors 

of the matrix of D* equal, respectively,  

             λ*2D*,  λ*2D*ji, and λ*D*(n+2)i  for i,j = 1, …, n+1. 

In addition, whenever u =  U(p1,pM1, F(p1, pM1,A)),   

                 λ*−nD* = − λ2D, λ*−(n−1)D*jj = − λ2Djj, i,j = 1, …, n+1, and 

                 λ*−(n−1)D*(n+2)i = − λD(n+2)i, i = 1,…,n+1.  

Consequently, for j,i = 1, …, n+1, and u =  U(p1,pM1, F(p1, pM1,A)),   

                 D*ji/D* = λDji/D, and D*(n+2)i/D* = D(n+2)i/D.                (27) 

But if that is so, then in terms of D and Dij the derivatives of H(∙) become   
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                                    ∂Hi(u,p1,pM1)/∂p1j = 

            D−1[λDji  – ∂U(∙)/∂p1jD(n+2)i]   – D−1∑1≤k≤n+1 Dki∂2U(∙)/∂q1k∂p1j;  and                                                

                            ∂Hi(u,p1,pM 1)/∂u = D−1D(n+2)i ,                                    (28) 

           It follows from the equations in (28) that a change in a current-period 

       price, say p1j, has three effects on Hi(∙), for i,j = 1, …, n+1, 

                           a substitution effect, D−1λDji; 

                     an income effect, – D−1∂U(∙)/∂p1j D(n+2)i; and                      

              an expectations’ effect, – D−1∑1≤k≤n+1 Dki∂2U(∙)/∂q1k∂p1j.            (29) 

Whenever u =  U(p1,pM1, F(p1, pM1,A)), the Hicksian substitution effect is 

identical with the Marshallian substitution effect, and the Hicksian 

expectations’ effect equals the Marshallian expectations’ effect.  Moreover, the 

Hicksian income effect differs from the Marshallian income effect both 

because ∂U(∙)/∂p1j need not equal qij, and because the interpretation of the two 

effects differs.  The Marshallian income effect is a measure of the change in the 

consumer’s current-period real income due to a change in a current-period 

price.  The Hicksian income effect is a measure of the change in the current-

period real income due to a change in the consumer’s expectations about the 

behavior of future prices.       

              It is, also interesting in this context to observe that, for all (u, p1, pM1) 

€ R++n+2 at which u = U(p1,pM1, F(p1, pM1,A)), if one compensates H(∙) for both 

an income effect and an expectations effect, H(∙) becomes a compensated 

Marshallian demand function.  To wit, for i,j = 1,…, n+1, 

                      H(u, p1,pM1) = F(p1, pM1,A)), D*−1D*ji =  D−1λDji,                                               

      D*−1D*ji = ∂Hi(u,p1,pM1))/∂p1j + ∂U(∙)/∂p1j∂Hi(u,p1,pM1)/∂u +  

                                                              D−1∑1≤k≤n+1 Dki∂2U(∙)/∂q1k ∂p1j. and             
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       D−1λDji = ∂Fi(p1,pM1,A)/∂pj + q1j∙∂Fi(p1,pM1,A)/∂A +  

                                                      D−1∑1≤k≤n+1Dki∂2U(∙)/∂q1k∂p1j.3                    (30)                                             

                   The Hicksian demand function, H(∙), need not be homogeneous of degree 

         zero in prices.  In addition, the matrix, { ∂Hi(u, U(p1,pM1), p1, pM1)/∂p1j } need 

         not be symmetric and negative semi- definite.   Only when the Hicksian  

         demand function is compensated for both the income and expectations’ effects, 

         is it symmetric and negative semi-definite.  The next example establishes that. 

 

         Example 4.  Consider the uncertainty version of Stone’s Linear 

Expenditure System with the utility function to be maximized, 

                  U(p1,pM1,q1,M1) = αlog(x1 – δ) + βlog(x2 – γ) +  

                                      E{B(P2) + (a+b+c)log(μ1 – p21d – p22e) │P1},  

          

         Note 3:  In this context it is interesting that the second equation in (28) is 

         almost equal to Kalman’s equation  (2.4) which he established for the  partial 

         derivative, ∂qi/ ∂ph│u constant.  In Kalman’s derivative, u denotes the value 

         of the Kalman-consumer’s utility function and qi and ph, respectively, denote 

         the ith commodity and hth price in Kalman’s model.  With my notation,   

         Kalman’s equation (2,4) equals, 

                        D−1λDji  – D−1∑1≤k≤n+1 Dki∂2U(∙)/∂q1k∂p1j − λ−1∂U(∙)/∂p1iD−1D(n+2)i.    

To Kalman, his equation (2.4) records the substitution effect on qi of a 

          change in ph (cf. Kalman’s equations 2.4 and 2.5 and his comments on pp. 501 

          and 502).  That is very different from the interpretation I give in (29) to the 

          equations in  (28).  
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In this case with i,j = 1, 2, 3,  the matrix 

                   {∂Hi(u,p1,pM1)/∂p1j} =   

 {λDji/D − ∂U(∙)/∂p1j D4i/D − ∂/∂p11E[(a+b+c) (μ1 – p21d – p22e)−1│P1 ]D31/D }.  

Since,  

         D21 =  (p11∙ p12∙ E[(a+b+c)(μ1 – p21d – p22e)−2│P1 ], 

         D12 =  (p11∙ p12 ∙ E[(a+b+c)(μ1 – p21d – p22e)−2│P1 ]), 

         D41 =  (p11∙β∙ E[(a+b+c)(μ1 – p21d – p22e)−2│P1 ])/(x2 –γ)2, and 

         D42 = (αp12∙ E[(a+b+c)(μ1 – p21d – p22e)−2│P1 ])/(x1  −δ)2, 

it is evident that ∂H2(u,p1,pM1)/∂p11 need not equal ∂H1(u,p1,pM1)/∂p12, and 

hence that the given matrix need not be symmetric.  However, when 

compensated for both the income and expectations effect, the given Hicksian 

demand function is symmetric.   

 

         3.5  The cost function under uncertainty 

         The consumer’s cost function in the theory of consumer choice under 

         uncertainty, C(∙), records the minimum value of p1q1 + pM1M1 in  

         the set,{(q1,M1) € R+n+1: U(p1,pM1,q1,M1) ≥ u}.  Consequently,  

                                    C(∙):R+ × R++n+1→ R+n+1, and 

                                 C(u,p1, pM1) = ∑1≤i≤n+1 p1iHi(u,p1, pM1).            (31) 

                       The present cost function is an increasing function of u. However,  

        since U(p1,pM1,∙) may change with the change in prices, C(u,∙)  

         need not be a non-decreasing and concave function of (p1, pM1).  Moreover, 

         since H(u,∙) need not be homogeneous of degree zero, C(u,∙) need not be  

         homogeneous of degree one.  Finally, the effect on C(∙) of a change in a  

         price, say ∂C(u,p1, pM1)/∂ p1i, need not equal  Hi(u,p1,pM1). 
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         To see why, refer to (28) and observe that   

                                        ∂C(u, p1, pM1)/∂p1i =   

                   Hi(u,p1, pM1) + ∑1≤j≤n+1p1j[∂Hj(u,p1,pM1)/∂p1i] = 

                                        Hi(u,U(p1,pM1),p1, pM1) − ∂U(∙)/∂p1i,                          (32 

           since ∑1≤j≤n+1 p1jDij = 0, and ∑1≤j≤n+1 p1jD(n+2)j = D, i = 1,…,n+1. 

                  From the preceding observations it follows that if I adopt H(∙) and C(∙),  

         respectively, as the Hicksian demand function and the consumer’s cost 

         function, many of the restrictions that Deaton and Muellbauer put on their 

         model’s parameters are not restrictions on which my theory of consumer choice 

         under uncertainty will insist. 

 

        3.6  Concluding remarks 

        To sum up for an empirical analysis of consumer choice under uncertainty. 

        In the given theory of consumer choice under uncertainty the Marshallian 

        Demand function has the adding-up property.  However, it need not be 

        homogeneous of degree zero in prices and net worth, and it does not satisfy the 

        symmetry and negative semi-definite condition III.  The compensated version; 

        i.e., the Hicksian demand function, H(∙), satisfies the equation,  

                        F(p1,pM1,A) =  H(u, p1, pM1),  

       whenever u =  U(p1,pM1, F(p1,pM1,A)).  However, it need not be 

       homogeneous of degree zero in prices, and it need not be symmetric in the sense 

       that, for all u € R++, (p1, pM1) €R++n+1, and i,j = 1, …,n,                    

                ∂Hi(u,p1,pM1)/∂p1j = ∂Hj(u, p1,pM1)/∂p1i and 

                 ∂Hn+1(u,p1,pM1)/∂p1i = ∂Hi(u,p1,pM1)/∂pM1  

                Finally, the consumer’s cost function, C(∙), is an increasing function of u 



28 
 

       and satisfies the equation,  

                     C(u, p1, pM1) = ∑1≤i≤np1iHi(u, p1, pM1) + pM1Hn+1(u, p1, pM1). 

        However, it need not be a non-decreasing and concave function of (p1, pM1), and 

        it need not be a linearly homogeneous function of (p1, pM1).    

 

 

4.  An Empirical Analysis of Consumer Choice under Uncertainty 

 In Stigum 2016 the author describes three different scenarios for empirical 

work in economics – one for applied econometrics in the tradition of Ragnar 

Frisch, another for applied econometrics in the tradition of Trygve Haavelmo, 

and a third for the kind of empirical analyses that are carried out by a large part 

of present-day econometricians.  Frisch’s researcher confronts his data with an 

axiomatized theory about a few undefined terms that live and function in an 

abstract model world.  He uses bridge principles to describe how his theory 

variables are related to his data.  Haavelmo’s researcher, also, confronts his 

data with an axiomatized theory about the characteristics of variables that live 

in a model world.  He identifies his theory variables with unobservable true 

data variables, and he uses error terms and auxiliary variables to relate the 

values of the true data variables to his own observed data variables.  In the 

third scenario the researcher describes characteristics of his data variables by 

means of ad-hoc theoretical hypotheses.  When he formulates his econometric 

model, he uses auxiliary variables and error terms to account for measurement 

errors and misspecification of equations.   

           In this section of the paper, I will generate data for consumer choice 

under uncertainty and use them and the prescriptions of applied econometrics 
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in the tradition of Haavelmo to carry out an empirical analysis of an 

uncertainty version of Stone’s Linear Expenditure System.  

             I imagine an empirical context in which 400 consumers, subject to the 

budget constraint each consumer faced, have purchased their preferred budget 

vectors – two commodities and a risky asset.  The chosen vectors, presumably, 

maximized the values of the respective consumers’ utility functions.  I assume 

that the 400 utility functions were all models of the utility function in Example 

1 with a + b + c = 1, and δ = γ= 0; i.e., that 

         U(p11,p12,p13,x1,x2,μ1) = αlog(x1) + βlog(x2) +  

                                   E[B(P2) + log(μ1 – p21d – p22e) │P1],             (34) 

where P1 = (p11,p12,p13), P2 = (p21,p22), and B(P2) = alog(a/p21) + blog(b/p22) + 

clog(c/p23).  In addition, I assume that the budget constraints that the 

consumers faced were all models of the equation, 

                            p11x1 + p12 x2 + p13μ1 ≤ A.                                           (35)                                               

Finally, I assume that the observations I have of the consumers’ net worth, A, 

their choices of (x1, x2, μ1), and the prices they faced, (p11, p12, p13), constitute a 

random sample.  I will use these observations to check if the uncertainty 

version of Stone’s Linear Expenditure System is empirically relevant in the 

given empirical context. 

                     I begin my econometric analysis by listing axioms for the uncertainty 

         version of Stone’s theory and axioms for the data generating process. Then I 

          explain the need for axioms that delineate the relationship between true data 

          variables and observed data variables.  At last I present the statistical results  

          and discuss their implications for the empirical relevance of Stone’s Linear  

          Expenditure System and for the salient characteristics of consumer choice  
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        under uncertainty. 

  

4.1  Axioms for the uncertainty version of Stone’s Theory 

I imagine that the variables in Stone’s theory belong in a theory universe. This 

theory universe is a triple, (ΩT, ГT, (ΩT, ℵT, PT(·))), where ΩT is a subset of a 

vector space, ГT is a finite set of assertions concerning properties of vectors in ΩT, 

and (ΩT, T, PT(·)) is a probability space.   The latter comprises ΩT, a σ field of 

subsets of ΩT, ℵT, and a probability measure, PT(∙)):ℵT →[0,1].                                

            The assertions in ГT consist of five axioms, A 1-A 5. 

  

          A 1  ΩT  R3 × R × R3 × R2  . Thus ωT  ΩT only if ωT = (x,A,p1,p2) for some  

                      x ϵ R3, A ϵ R, p1 ϵ R3, p2 ϵ R2, and (x,A,p1,p2) ϵ R9. 

 

          A 2  x € R+3, A ϵ R++, p1 ϵ R++3, and p2 ϵ R++2.    

 

           In the intended interpretation of x, A, p1, and p2, x = (x1, x2, μ), where x1 

                and x2 are two different commodities and μ is a risky asset, A represents the 

           net worth of the consumer, p1 denotes the current-period price of x, and p2  

           denotes the next-period price of (x1, x2).  

       Relative to PT(∙), the components of (x, A, p1, p2) are random 

          variables.   Axioms A 3 and A 4 delineate their characteristics.  

 

          A 3  Let x(∙):ΩT→R+3, A(∙):ΩT→R++, p1(∙):ΩT→R++3, and p2(∙):ΩT→R++2 be 

                 defined by the equations,  

                          (x(ωT), A(ωT), p1(ωT), p2(ωT)) = ωT and ωT ϵ ΩT. 

                 The vector-valued function, (x,A,p1,p2)(∙), is measurable with respect to  

                  ℵT and has, subject to the conditions on which ГT insists, a well-defined 
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                  probability distribution relative to PT(∙).  I refer to it as the RPD, where R 

                  is short for researcher, P for probability, and D for distribution. 

   

          A 4  Relative to PT(∙), the components of x, A, p1,  and p2 have finite means 

               and finite positive variances.  

 

        The last axiom, A 5, describes how the nine random variables, x(∙), 

           A(∙), p1(∙), and p2(∙), are related to one another in the theory. 

 

           A5  There exist positive constants, α, β, e, and g, that satisfy the following 

                  three equations for all ωT ϵ ΩT:  

 

        x1(ωT) = α∙(p13/p11)(ωT)∙E[(μ(ωT) – p21e – p22g)−1│P1(ωT) ]−1;         (36)           

        x2(ωT) = β∙(p13/p12)(ωT)∙E[(μ(ωT) – p21e– p22g)−1│P1(ωT) ]−1;      (37) 

                  μ(ωT) = [(A/p13)(ωT)−(α+β)∙E[(μ(ωT)−p21e−p22g)−1│P1(ωT)]−1;    (38) 

               and p21e + p22g < μ, 

 

          where E[(∙)│P1(ωT) ] denotes the conditional expectation of (∙) given the 

 value of P1(ωT), and where d and g are taken to vary over sample consumers. 

  

               The five theory axioms have many models. In the intended 

interpretation of the fifth axiom, A5, the axiom records, for each ωT ϵ ΩT, the 

three necessary conditions for a maximum of Stone’s expected-utility function 

that remain when one in Example 3 accounts for the budget constraint, 

substitutes E[(a+b+c)(μ1 – p21d – p22e)−1│P1 ]/ p13 for λ, and takes  (a + b + c) 
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to equal 1, and δ and γ to equal zero.  The approximate solution to these 

necessary conditions together with error terms constitute the consumer’s 

Marshallian demand function for (x1, x2, μ) in the theory. 

         The Marshallian demand function in the uncertainty version of Stone’s 

Linear Expenditure System has the adding up property, and the equations in    

A 5 accord with that.  The function is not homogeneous of degree zero in prices 

and net worth, and it is not symmetric in the way condition III in Section 2 

prescribes.  That was established in Example 4 above.  However, the 

Marshallian demand function in Stone’s Linear Expenditure System has other 

interesting properties that one can derive by implicit differentiation of the 

equations in A 5.  Here are seven examples:   

      Let EμP1 = E[(μ(ωT)−p21e−p22g)−1│P1(ωT)]−1, suppress ωT, and observe that 

EμP1 is an increasing positive function of μ. Then 

            

           ∂x1/∂p11=−α∙(p13/p112)∙EμP1+α∙(p13/p11)∙[∂/∂μEμP1∙∂μ/∂p11+∂/∂p11EP1] (39)                  

              ∂x2/∂p11 = β∙(p13/p12)∙[ ∂/∂μEμP1∙∂μ/∂p11+∂/∂p11EP1]                (40) 

∂x2/∂p13 = β∙(1/p12)∙EμP1+β∙(p13/p12)∙[ ∂/∂μEμP1∙∂μ/∂p13+∂/∂p13EP1]  (41)             

        (1 + (α+β)∂/∂μEμP1)∙∂μ/∂p13 = [−(A/p132) – (α+β)∂/∂p13EP1]           (42)                                           

                (1 + (α+β)∙∂/∂μEμP1)∙∂μ/∂p11 =  − (α+β)∂/∂p11EP1               (43) 

                     ∂x1/∂A = α∙(p13/p11)∙∂/∂μEμP1∙∂μ/∂A                                    (44) 

                     (1 + (α+β)∙∂/∂μEμP1)∙∂μ/∂A = (1/p13)                              (45)                                                

                           

These equations put restrictions on the parameters of the econometric model 

that I shall use in searching for the empirical relevance of the intended family 

of models of A 1 – A 5; e.g., ∂μ/∂A > 0, ∂x1/∂A > 0, and if ∂/∂p11EP1 < 0 - as in 
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Example 5 below, then ∂μ/∂p11 > 0.  Here and in equations (39) - (45) I have 

used EP1 in the place of EμP1 to indicate that the derivative, ∂/∂p11EP1, is to be 

taken with respect to P1 and not with respect to both μ and P1. 

        The theory axioms may be hard to read.  So here is an example to 

clarify the underlying ideas. 

 

Example 5  Consider the necessary conditions for a maximum of the utility 

function in (34) subject to the condition in (35). These necessary conditions 

equal the equations in Axiom A 5 when ωT is removed from each equation. 

Assume that d = e = 0.25, and that the prices of the two commodities and the 

risky asset satisfy the conditions:  

                                                    pij  € {1, 2}, i,j = 1,2; and p13 = 1.                            (46) 
              
         In addition, assume that the conditional probabilities in the expression,  
                   
                                                      E[(μ1 – (0.25)∙(p21 + p22))−1│P1 ],                       (47) 
 
         with z = (p21 + p22), satisfy three conditions:  
 
                 (1) When (p11, p12 , p13)=(1,1.1), 
           
                                (pr. z=2) is 2/3, (pr. z=3) is 1/6, (pr. z=4) is 1/6;  
     
         i.e.,   when P1 = (1,1.1), the probability that (p21 + p22) equals 2, 3, or 4 is, 
 
         respectfully, (2/3), (1/6), and (1/6);  
 
                 (2) when (p11, p12 , p13) = (1,2,1) or (2,1,1),  
 
                                      (pr. z = j) is 1/3, for j = 2, 3, and 4; and 
                                    
                 (3) when   (p11, p12 , p13) = (2,2.1),  
 
                             (pr. z = 2) is 1/6, (pr. z = 3) is 1/6, (pr. z = 4) is 2/3.  

 
 Suppose that P1 = (1,1,1).  Then the three equations in A5 become 

                 x1  = α[(2/3)(μ1−0.5)−1 + (1/6)(μ1−0.75)−1 + (1/6)(μ1 – 1)−1]−1 
                 x2  = β[(2/3)(μ1−0.5)−1 + (1/6)(μ1−0.75)−1 + (1/6)(μ1 – 1)−1]−1 
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           μ1 =  A – (α + β) [(2/3)(μ1−0.5) −1 + (1/6)(μ1−0.75)−1 + (1/6)(μ1 – 1)−1]−1  
 
         With α = β = 0.5, and A = 29.38, the vector, (x1, x2, μ1) = (7.19, 7.19, 15),  

         solves these equations. 

                         Similarly, when P1 = (1,2,1) or (2,1,1), the three equations in A5 can 

         be written as  

             x1 = (α/φ)[(1/3)(μ1−0.5)−1 + (1/3)(μ1−0.75)−1+ (1/3)(μ1 – 1)−1]−1 
             x2 = (β/ψ)[(1/3)(μ1−0.5)−1+ (1/3)(μ1−0.75)−1+ (1/63)(μ1 – 1)−1]−1  
             μ1 =  A – (α + β) [(1/3)(μ1−0.5)−1+ (1/3)(μ1−0.75)−1+ (1/3)(μ1 – 1)−1]−1 ,  
 
         where φ denotes the pertinent value of p11 and ψ denotes the pertinent value of 

         p12. With α = β = 0.5, and A = 29.250, the vector, (x1,x2,μ1) = (7.125,3.5625, 15) 

         solves these equations when P1 = (1, 2, 1), and the vector, (x1, x2, μ1) = 

         (3.5625, 7.125, 15), solves the equations when P1 = (2, 1, 1). 

                 Finally, when P1 = (2,2,1), the equations can be written as follows: 

             x1 = (α/2)[(1/6)(μ1−0.5)−1+ (1/6)(μ1−0.75)−1 + (2/3)(μ1 – 1)−1]−1 
             x2 = (β/2)[(1/6)(μ1−0.5)−1+ (1/6)(μ1−0.75)−1+ (2/3)(μ1 – 1)−1]−1 
             μ1 =  A – (α + β) [(1/6)(μ−0.5)−1+ (1/6)(μ−0.75)−1 + (2/3)(μ – 1)−1]−1 . 
 
         With α = β = 0.5, and A = 29.12, the vector, (x1, x2, μ1) = (3.53, 3.53, 15), solves the 

          equations. 

                 In looking at the preceding triples of equations, it is interesting to observe that,  

          when P1 changes from (1,1,1) to (2,1.1), the consumer’s demand for x1 changes from 

          7.19 to 3.5625.  This change is the sum of a substitution effect – due to the change in 

          p11 , an expectations’ effect – due to the change in the value of E{(∙)│P1}−1 from  

          14.38 to 14.25, and an income effect - due to the change in A from 29.38 to 29.25.        

                           Similarly, when P1 changes from (2,2.1) to (2,1,1), the consumer’s  

          demand for x2 increases from 3.53 to 7.125.  This change is the sum of a substitution 

          effect – due to the change in p12, an expectations’ effect – due to the change in 

          E{(∙)│P1}−1 from 14.12 to 14.25, and an income effect - due to a change in A from 

          29.12 to 29. 25.  These observations illustrate the kind of behavior characteristics which 
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          the equations in (39) – (45) depict. 

 

         

          4.2  Axioms for the Data Generating Process 

          I imagine that the data that I will use to test the empirical relevance of my  

          theory axioms belong in a data universe.  This data universe is a triple,  

          (ΩP, ГP, (ΩP, ℵP, PP(∙))), where ΩP is a subset of a vector space, ГP  

          is a finite set of assertions concerning properties of vectors in ΩP, and  

          (ΩP, ℵP, PP(∙))) is a probability space.  The latter comprises ΩP, a σ field of 

          subsets of ΩP, ℵP, and a probability measure, PP(∙)): ℵP →[0,1].  

       The assertions in ГP consist of four axioms, D 1- D 4. Here are the first 

          two axioms. 

 

          D 1  ΩP  R3  × R3  × R2 .  Thus, ωP ϵ ΩP only if ωP = (y, v, ma,v13)  for some 

                   y ϵ R3 , v ϵ R3, (ma, v13) ϵ R2, and (y, v, ma,v13) ϵ R8. 

 

          D 2  If ωP ϵ ΩP and ωP = (y, v, ma,v13)  for some (y, v, ma,v13) ϵ R8, 

                  then v1y1 + v2y2 + v3y3 = ma. 

 

                     In the intended interpretation of these axioms, the 

          eight components of the vectors in ΩP denote so many units of two 

          commodities, (y1, y2), a risky asset, y3, the prices of y1, y2, and y3, 

          (v1, v2, v3), and two auxiliary variables, ma and v13, that are taken to measure  

          the initial net worth and the income expectations of a consumer.  Whether my  

          interpretation of y, v, ma, and v13 is empirically relevant in the empirical 
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          context that I described above, remains to see.  

          Relative to PP(∙), the components of y, v, ma, and v13 are random  

          variables.  Axioms D 3 and D 4 describe their characteristics. 

 

          D 3  Let y(∙):ΩP → R3, v(∙):ΩP → R3, (ma, v13)(∙)) :ΩP → R2 be defined by the 

                  equations,      

                                    (y(ωP), v(ωP), (ma, v13)(ωP)) = ωP and ωP ϵ ΩP.   

                  The vector-valued functions, y(∙), v(∙), and (ma, v13)(∙) are measurable 

                  with respect to ℵP and have, subject to the conditions on which ГP insists,  

                  a well-defined joint probability distribution, the TPD, where T is short for 

                  true, P for probability, and D for distribution. 

 

           D 4  Relative to PP(∙), y(∙), v(∙), and (ma, v13)(∙)  have finite means 

                    and finite positive variances.  

         

         In the intended interpretation of the assumptions in D1 – D 4, the 

           TPD plays the role of the data generating process.  I assume that TPD has one 

           ‘true’ model, and that the data variables in this model have finite means and 

           finite positive variances.  The researcher does not know what the ‘true’ model 

           of TPD looks like.         

                        In the present theory-data confrontation the axioms of the data  

           universe, ГP , delineate an identifiable and low-level-theory-consistent structure  

           of the empirical analysis. The low-level axioms provide a framework within which 

           the high-level theory – here the family of models of A 1 – A 5 - can be tested  

           (cf. Bontemps and Mizon (2003) [5] (p. 365)). 



37 
 

                       To introduce the high-level theory into the present empirical analysis, I follow 

           Haavelmo’s suggestion (cf. Haavelmo 1944, pp. 7-8) and identify the values of the  

           theory variables with the true values of the corresponding observed data variables.  In 

           addition, I identify the values of functions of theoretical variables with functions of the 

            true values of pertinent data variables.  That means in the present analysis that I will 

           identify the values of the components of (x1, x2, μ) with the true values of the 

           corresponding components of (y1, y2, y3), and the values of (p11,p12, p13) with the true 

           values of the corresponding components of (v1, v2, v3).  Similarly, I will identify the 

           value of A with the true value of ma, and I will take the true value of v13 to be a  

           measure of the value of E[(μ1 – p21d – p22e)−1│P1 ].  Finally, I will identify 

           the values of the three functions,  

 

                       α∙(p13/p11)∙E[(μ1 – p21d – p22e)−1│P1 ]−1,                                    (48) 

                       β∙(p13/p12)∙E[(μ1 – p21d – p22e)−1│P1 ]−1, and                              (49)  

                       ((A/p13)–(α+β)∙E[(μ1 – p21d – p22e)−1│P1 ]−1),                            (50) 

            

           respectively, with the true values of the linear functions, 

             

                      (aj∙v13+ bj∙p11 + cj∙p12+ dj∙p13 + ej∙ma), j = 4,5,  and                    (51)  

                      (g6 +a6∙v13 + b6∙p11+ c6∙p12 + d6∙p13 + e6∙(ma/p13)).                     (52) 

            

                     Here, it is important to observe that the equations in (51) and (52) are not meant 

           to be linear approximations to the non- linear functions in (48)-(50).  In the empirical 

           analysis, the TPD value of a coefficient in equations (51)-(52) is taken to have the 

           same sign as an estimate of the coefficient if it lies in the estimate’s 95% confidence 

           interval.  In addition, I assume that in a 95% confidence region of the estimates of the  

           means of the data variables in D 1 and D 5, the derivatives of the functions in  

           equations (48)-(50) have the same signs as the true values – i.e.,  the TPD values – of  
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           the corresponding derivatives in equations (51)-(52).  

                  With the given identification in mind, I can in two additional axioms, D 5 and D 6,        

           formulate the data version of A 1 – A 5, and delineate the relationship between the 

           true and the observed values of the data variables. 

 

           D 5  There exist a constant G, three five-tuples of constants, (ai, bi, ci, di, ei), i = 1,2,3, 

                    and a triple of random variables, (η1, η2, η3)(∙), such that, for all ωP ϵ ΩP, 

                   

            y1(ωP)=a1v13(ωP)+b1v1(ωP) c1v2(ωP)+d1v3(ωP)+e1ma(ωP) +η1(ωP);                (53)                               

             y2(ωP)=a2v13(ωP)+b2v2(ωP)+c2v2(ωP)+d2v3(ωP)+e2ma(ωP)+η2(ωP);                (54)               

             y3(ωP) =G+a3v13(ωP)+b3v1(ωP)+c3v2(ωP)+d3v3(ωP)+e3(ma/v3)(ωP)+η3(ωP);   (55)        

                     The true values of the constants in (53) – (55) – i.e. their values  

                      in the TPD – are such that the true values of the data variables satisfy the 

                      three equations without the error terms. 

 

            D 6  In the TPD, η1(∙), η2(∙), and η3(∙) have finite means, finite  positive  

                      variances, and may be orthogonal to the independent variables in equations  

                      (53) – (55).  They may be correlated, but they need not be normally 

                      distributed. 

 

4.3  The empirical relevance of the intended family of models of A 1 – A 5 

           I begin the empirical investigations by estimating the means of the data 

variables in D 1 and D 5, and - with Stata-16’s structural equation modeling 

program - by estimating the values of the parameters in equations (53) – (55). 

The means are recorded in Table 1, and the ML estimates of the parameters in 

equations (53) – (55) are listed in Table 2.    
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                                                    Table 1   

                       The means of the data variables in D 1 and D 5                                      

 

            The variables in D 1 are not normally distributed as Dornik-Hansen’s 

multivariate normality test reveals:  chi2(12) = 3824.518   Prob>chi2 =  

0.0000.  In addition, the error terms in the estimated equations are not normally 

distributed.  According to the Dornik-Hansen multivariate normality test of the 

three error variables,  chi2(6) = 1053.517   Prob>chi2 =  0.0000.  

Consequently, the accuracy of the 95% confidence intervals in the two tables 

and the t-values in Table 2 are suspect (cf. in this respect Davidson and 

MacKinnon, 1993, pp. 88-112).  To justify my use of these measures, I must 

appeal to asymptotic theory and show that in the TPD the parameter estimators 

are consistent, and that the estimates are asymptotically normally distributed. 

The necessary arguments for that are standard and omitted here.  

               

 

                                                        Table 2   

 

                   Simultaneous ML estimates of the parameters in equations (53) – (55) 

 
 

The error terms in the three estimated equations are correlated.  However, 

for the intended purposes of Section 4, they are orthogonal to all the 

independent variables except v3.  The correlation matrix in Table 3 attests 

to that.                                           
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                                                    Table 3 

                   Correlation matrix of independent data variables and the error terms  

 

         In applied econometrics in the tradition of Haavelmo, the empirical 

relevance of a theoretical hypothesis is determined the way a null hypothesis is 

tested in mathematical statistics.  The theoretical hypothesis is taken to be 

empirically relevant in a given empirical context if and only if it cannot be 

rejected. 

          To see if his Linear Expenditure System was empirically relevant, Stone 

checked whether his econometric model satisfied the adding-up, the 

homogeneity, and the symmetry property of a Marshallian demand function.  

Unfortunately, I cannot use any of these characteristics in my search for the 

empirical relevance of the uncertainty version of Stone’s System.  The adding-

up property is satisfied in Axiom A 5.  My data, also, satisfy the adding-up 

property in the sense that v1∙y1 + v2∙y2 + v3∙y3 = ma.  However, the assumptions 

I make in D 5 and D 6 do not ensure that the true model of D 1 – D 6 has the 

adding-up property.  The other two properties are irrelevant according to 

Example 4 above.  That leaves me with the equations in (39) – (45) and their 

many analogues.  Whether I can use them to test the empirical relevance of the 

uncertainty version of Stone’s Linear Expenditure System remains to see. 

             To use equations (39 – (45) and their analogues in my search for the 

empirical relevance of the uncertainty version of Stone’s System, I must look 

for contradictions and confirmations.  Contradictions will cause rejection of 

Stone’s System.  If there are no contradictions, the confirmations will provide 
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information about consumer behavior characteristics. In this respect three 

remarks are in order. 

 

Remark 1  In the present case,  the theory – i.e., the intended family of models 

of A 1 – A 5 – is about consumer choice under uncertainty.  When I (1) 

identify theory variables with true values of data variables, (2) identify 

functions of theory variables with functions of data variables with true values, 

and (3) relate the probability distribution of the true values of the data variables 

to a data generating process – the TPD – that has only one model, the estimates 

in Table 2 become estimates of characteristics of a typical consumer’s behavior 

under uncertainty. 

 

Remark 2  My description of the behavior under uncertainty of a typical 

consumer tells how he will react to changes in the values of pertinent 

parameters; e.g., how his demand for x1 will change when its price, p11, 

changes.  Note, therefore, that the description is about the signs of estimated 

parameters and not about the values of these parameters.  The signs have a 

meaning only if the TPD values of the respective estimates belong in the 

parameters’ confidence intervals, and the TPD values have the same signs as 

the estimated parameters.   

 

Remark 3  The equations in (39) – (45) display examples of the results of 

differentiating the functions in (48) – (50) implicitly with respect to A and the 

components of P1.  In searching for confirmations, I associate the signs of 

derivatives of the functions in equations (51) – (52) with the signs of the 
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corresponding derivatives of functions in (48) – (50), and I assume that the sign 

of a derivative in (51) - (52) is also the sign of the corresponding derivative in 

(48) – (50).  I take a relation in (39) – (45) to be confirmed if the signs of the 

pertinent derivatives in (51) – (52) are meaningful and if the given relation 

makes economic-theoretic sense. 

 

          So far, I have failed to find contradictions.  The confirmations I can 

establish may be controversial, but here they are:  

   

              B1.  I associate the signs of ∂y1/∂v1 and ∂y2/∂v2, respectively, with the signs of  

                  −α∙(p13/p112)∙EμP1 + α∙(p13/p11)∙[∂/∂μEμP1∙∂μ/∂p11+∂/∂p11EP1], and  

                  −β∙(p13/p122)∙EμP1 + β∙(p13/p12)∙[∂/∂μEμP1∙∂μ/∂p12+∂/∂p1aEP1].         (56) 

 In addition, I associate the signs of ∂y1/∂v2 and ∂y2/∂v1, respectively, with the 

signs of   

                         α∙(p13/p11)∙[∂/∂μEμP1∙∂μ/∂p12+∂/∂p12EP1] and  

                          β∙(p13/p12)∙[∂/∂μEμP1∙∂μ/∂p11+∂/∂p11EP1].                     (57) 

Finally, since the true value of v13 is taken to be a measure of the value of            

E[(μ1 – p21d – p22e)−1│P1 ], I associate the signs of ∂y1/∂v13∙ and∙∂y2/∂v13, 

respectively, with the signs of     

                    −α∙(p13/p11)∙(EμP1)2 and −β∙(p13/p12)∙(EμP1)2.                     (58) 

 If I do, it follows from equations (39) and (40) that  

       ∂x1/∂p1 < 0, ∂x2/∂p12 < 0, and that ∂x1/∂p12 < 0 and ∂x2/∂p11 < 0.      (59) 

The last two inequalities imply that the two commodities are complements and 

not substitutes.  The first two inequalities imply that demand for the respective 

commodities will increase when its price falls. 
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            In this context it is interesting that the given inequalities are in accord 

with the consumer’s response to price changes in Example 5.  Their signs are, 

also, in accord with the signs of the corresponding derivatives in Stone’s 

certainty theory.  

              Here it is important to recall that equation (43) and its analogue for 

∂μ/∂p12 insist that ∂/∂p11EP1and ∂μ/∂p11 have opposite signs and that 

∂/∂p12EP1and ∂μ/∂p12 have opposite signs.  The same equations, also, insist that 

if my assignment of signs to the two equations in (57) is correct, then it must 

be the case that ∙ 

                     ∂μ/∂p11 > 0 and ∂/∂p12EP1 < 0, and that 

                     ∂μ/∂p12 > 0, and ∂/∂p12EP1 < 0.                                            (60)                                        

               

              B2.  I associate the signs of ∂y1/∂v3 and ∂y2/∂v3, respectively, with the 

signs of   

              α∙(1/p11)∙EμP1 + α∙(p13/p11)∙[∂/∂μEμP1∙∂μ/∂p13+∂/∂p13EP1] and  

              β∙(1/p12)∙EμP1 + β∙(p13/p12)∙[∂/∂μEμP1∙∂μ/∂p13+∂/∂p13EP1].          (61) 

If I do, it follows from equation (41) and its analogue for ∂x2/∂p13that 

                                ∂x1/∂p13 > 0, ∂x2/∂p13  > 0.                                          (62) 

This makes sense even for models of the axioms with small negative values of 

[∂/∂μEμP1∙∂μ/∂p13+∂/∂p13EP1]. 

 

              B3.    In accord with the signs of the functions in (57), I associate the 

signs of ∂y3/∂v1, ∂y3/∂v2 with the signs of 

                             (α+β)∙[∂/∂μEμP1∙∂μ/∂p11 + ∂/∂p11EP1],   

                                             (α+β)∙[∂/∂μEμP1∙∂μ/∂p12 + ∂/∂p12EP1].        (63)   
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Moreover, I associate the sign of ∂y3/∂v3 with the sign of 

             − (A/p132) – (α+β)∙[∂/∂μEμP1∙∂μ/∂p13 + ∂/∂p13 EP1].           (64) 

Finally, I associate the sign of ∂y3/∂v13 with the sign of  

                                                       (α+β)∙(EμP1)2.                             (65)    

If I do, it follows from equation (43) and its analogue for ∂μ/∂p12 that 

                                    ∂μ/∂p11 > 0 and ∂μ/∂p12 > 0 –                           (66) 

in accord with equation (60).  Similarly, it follows from equation (42) that 

                                        ∂μ/∂p13 < 0.                                                   (67) 

                             

Remark 4  In B3 I associate ∂y3/∂v1 and ∂y3/∂v2, respectively,  with   

(α+β)∙[∂/∂μEμP1∙∂μ/∂p11 + ∂/∂p11 EP1] and (α+β)∙[∂/∂μEμP1∙∂μ/∂p12 + ∂/∂p12 

EP1], and use equation (43) to observe that ∂μ/∂p11 > 0 and ∂μ/∂p12 > 0.  Now, 

according to (43), ∂μ/∂p11 and ∂/∂p11EP1 have opposite signs, and the same 

must be true of ∂μ/∂p12 and ∂/∂p12EP1.  Consequently, when ∂/∂p1j EP1 < 0,       

j = 1,2, my assignment of signs to the given derivatives makes sense only for 

models of the axioms in which 

                       ∂/∂μEμP1∙∂μ/∂p1j < − ∂/∂p1j EP1, j = 1,2.                             (68) 

 

            B4.   I associate the signs of ∂y1/∂ma, ∂y2/∂ma, and ∂y3/∂(ma/v3), 

respectively with the signs of  

              α∙(p13/p11)∙∂/∂μEμP1∙∂μ/∂A, β∙(p13/p12)∙∂/∂μEμP1∙∂μ/∂A, and  

                                        (1+(α+β)∙ ∂/∂μEμP1)−1.                                           (69) 

If I do, it follows from equation (44) and its analogue for ∂x2/∂A that                                    

                                 ∂x1/∂A > 0 and ∂x2/∂A > 0,                                            (70) 

and it follows from equation (45) that 
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                                               ∂μ/∂A > 0.                                                (71)

  

The signs of the first two derivatives are in accord with the signs of the 

corresponding derivatives in Stone’s certainty theory.  The arguments that 

underlie the last inequality follow from equation (45) and the relations, 

p13∙(∂/∂ma)(ma/p13) = (∂/∂ma)ma. 

 

            So far I have deliberated about variables and functions in an axiomatic 

system with five axioms for theory variables, A 1-A 5, and six axioms for data 

variables, D 1-D6.  The theory axioms describe characteristics of consumer 

choice under uncertainty. The first four of the data axioms describe 

characteristics of a data generating process in which each observation records a 

consumer’s choice of two commodities and one risky asset, the prices he faced, 

and his initial net worth.  The last two of the data axioms, D 5-D 6, describe 

how theory variables and data variables are related to one another.  With such a 

broad interpretation of the axioms in mind, I have in B1-B4 associated signs of 

derivatives of estimates of the functions in (53)-(55) with the signs of the 

corresponding derivatives of the functions in (48)-(50).  From this I have 

inferred how a typical sample consumer in an empirically relevant model of    

A 1-A 5 would respond to changes in the prices he faced and in his initial net 

worth.  Equations (59 and (70) record how his demand for commodities would 

change if his net worth and the commodities’ prices changed, and equation (62) 

describes how his demand for commodities changes if the price of the risky 

asset changeS.  Similarly,  equations (65), (66), and (71) describe how the 

typical consumer’s demand for the risky asset would respond to changes in his 

initial net worth and in the prices he faces.   
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           With the given broad interpretation of the axioms, the theory axioms,    

A 1-A 5, have many very different models.  One subfamily of these models 

constitutes the intended family of models of Example 1’s uncertainty version of 

Stone’s Linear Expenditure System.  When I adopt this subfamily as the 

intended interpretation of A 1-A 5 and use it in my empirical analysis, my 

estimates of equations (52)-(55) yield new and interesting information about 

consumer choice under uncertainty.  B5 attests to that. 

 

            B5  In the intended interpretation of A 1-A 5, the axioms describe 

consumer choice in an uncertainty version of Stone’s Linear Expenditure 

System.  In this theory, the typical consumer’s responses to price changes and 

changes in his initial net worth that I record in equations, (59), (62), (65), (66), 

(70), and (71), can be decomposed into a substitution effect, an income effect, 

and an expectations’ effect.  According to Example 3, the signs of the three 

income effects equal the signs of – x1(D41/D), – x2(D42/D), – μ(D43/D), where D 

and D4j, j = 1,2,3, equal, respectively, the determinant and the 4jth cofactor of 

the matrix in Example 3.  These three signs are negative since D > 0 and D4j > 

0, j = 1,2,3.  Now, the equations in (21) and their analogues for j = 1,2 imply 

that the signs of the three income effects equal the signs of – x1∂x1/∂A, – 

x2∂x2/∂A, – μ∂μ/∂A.  From this and the equations, (70) and (71), I conclude 

that in the given sample the three income effects of a change in prices on the 

typical consumer’s demand for commodities and a risky asset are negative.  

Similarly, in the theory the three expectations’ effects equal −D−1∂/∂p11E[(μ1–

p21d–p22e)−1│P1 ]D31, −D−1∂/∂p12E[(μ1–p21d–p22e)−1│P1 ]D32, and 

−D−1∂/∂p13E[(μ1 – p21d – p22e)−1│P1 ]D33, where D and D3j, j = 1,2,3, are, 
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respectively, the determinant and three cofactors of the matrix in Example 3.  

Since D > 0, D31 > 0, D32 > 0 and D33 < 0, it follows that the two commodities’ 

expectations’ effects are, respectfully, positive constant multiples of −∂/∂p11EP1 

and −∂/∂p12EP1, and the expectations’ effect on the consumer’s demand for μ is 

a negative multiple of −∂/∂p13EP1.  Now, equations (43) and (66) imply that in 

the given sample the signs of the expectations’ effects on a typical consumer’ 

demand for commodities when their respective prices change are positive. 

This, then, accords with the expectations’ effect in a model of the uncertainty 

version of Stone’s theory in which ∂/∂p11EP1 and ∂/∂p12EP1 are negative.  In 

the given sample, equations (42) and (67) imply that the expectations’ effect on 

a typical consumer’s demand for the risky asset when the price of μ changes is 

positive.  This accords with the expectations’ effect in a model of the 

uncertainty version of Stone’s theory in which – (α+β)∂/∂p13EP1 <  (A/p132).                                       

 

Concluding remarks          

I have found no contradictions for rejecting the empirical relevance of the 

uncertainty version of Stone’s Linear Expenditure System.  Hence, according 

to my calculations, in the present empirical setting Stone’s System is 

empirically relevant.  This result is interesting if the econometric arguments I 

used are sound.  I based my analysis on a system of necessary conditions for a 

constrained maximum of a consumer’s utility function, differentiated these 

necessary conditions, and used the derivatives and data to describe how 

consumers react to changes in prices and net worth. The arguments are simple 

and they display an interplay between theory and data that is novel. So, if it is 

all right to base the empirical analysis of consumer choice on the necessary 
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conditions themselves rather than on their solutions, my econometric 

arguments are sound.  
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                                                    Table 1   

                       The means of the data variables in D 1 and D 5                                      

 

            Variables   |       Mean             Std. Err.               [95% Conf. Interval] 

-------------+-------------------------------------------------------------------------------- 

                 y1             0.8989252       0.0232084           0.8532992    0.9445512 

                 y2                 6.990683         0.0480411           6.896238       7.085128 
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                 y3              4.987664         0.0522511           4.884942        5.090385 

                 v1                    1.9             0.0150188            1.870474        1.929526 

                 v2                    1.67            0.0235401            1.623722        1.716278 

                 v3               0.9500001       0 .0011432            0.9477526      0.9522476 

                ma             18.4457             0.2280978          17.99727         18.89412 

                v13              2.144075         0.0263041           2.092363          2.195787 

              ma/v3           19.41889            0.239191           18.94866          19.88912 

 

 

                                                        Table 2   

 

           Simultaneous ML estimates of the parameters in equations (53) – (55) 

 
                                   The estimates for y1 in equation (53)  

 

   Variables |         Coef.            Std. Err.            t            P>|t|          [95% Conf. Interval] 

-------------+------------------------------------------------------------------------------------------------- 

         v13       |  −0.2525318      0.0371883      −6.79       0.000    −0.3254196    −0.179644 

          v1        |  −0.2197993      0.0620879      −3.54        0.000    −0.3414894    −0.0981092 

          v2        |  −1.586188        0.1171962     −13.53        0.000    −1.815888      −1.356488 

          v3        |    1.271565         0.1555858        8.17         0.000      0.9666219      1.576507 

          ma      |    0.178661         0.0123428      14.47         0.000      0.1544695      0.2028525 

          _cons |          0  (constrained) 

 
    

                                  The estimates for y2 in equation (54)  

 

   Variables  |          Coef.            Std. Err.             t            P>|t|          [95% Conf. Interval] 
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-------------+-------------------------------------------------------------------------------------------------- 

      v13       |  −0.4088519       0.0325657      −12.55       0.000     −0.4726794   −0.3450243 

        v1        |  −0.1592775       0.0543739        −2.93       0.003     −0.2658483   −0.0527066 

        v2        |   −0.957302        0.1026002        −9.33       0.000     −1.158395     −0.7562092 

        v3        |     4.913284         0.136256          36.06       0.000       4.646227        5.180341 

       ma        |     0.2767115       0.0108051        25.61       0.000       0.2555338      0.2978891 

          _cons |          0  (constrained) 

 

                                        The estimates for y3 in equation (55)     

 

Variables                Coef.             Std. Err.             t             P>|t|           [95% Conf. Interval] 

-----------------------------------------------------------------------------------------------------------------             

     v13          |     1.943006        0.0030833       630.16       0.000          1.936962      1.949049            

       v1          |  − 0.0127003      0.0027608         −4.60       0.000        −0.0181114  −0.0072891            

       v2          |   −0.0873297      0.007359          −11.87       0.000        −0.101753   −0.0729064         

       v3          |   −0.8827636      0.0544198        −16.22       0.000        −0.9894244 −0.776102 

    ma/v3       |     0.0088881      0.0007386           12.03       0.000          0.0074404   0.010335     

  _cons         |     1.657825        0.0570665           29.05       0.000          1.545976     1.769673 

 

                                                    Table 3 

                   Correlation matrix of independent data variables and the error terms  

Variable             η1          η2         η3        v13         v1           v2           v3         ma         ma/v3 

-------------+------------------------------------------------------------------------------------------------- 

      η1        |    1.0000 

      η2        |  −0.9589   1.0000 
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      η3        |  −0.6379   0.7276   1.0000 

     v13       |  −0.0373   0.0393   0.0288   1.00 

       v1       |  −0.0580   0.0609   0.0447  -0.0365   1.0000 

       v2       |  −0.0325   0.0342   0.0251  -0.0724   0.0319   1.0000 

       v3       |  −0.3807   0.4003   0.2937  -0.6128   0.0000   0.0000   1.0000 

      ma       |  −0.0351   0.0368   0.0256   0.1012   0.0894   0.9271   0.0729   1.0000 

   ma/v3     |    0.0068  −0.0019   0.0023   0.1602   0.0908   0.9303 −0.0206  0.9953   1.0000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         


