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Abstract

In observational studies, confounding variables that affect both the exposure and an outcome of interest are a general
concern. It is well known that failure to control for confounding variables adequately can worsen inference on an exposure’s
effect on outcome. In this paper, we explore how exposure effect inference changes when non-confounding covariates are
added to the assumed logistic regression model, after the set of all true confounders are included. This is done via
an exhaustive simulation study with thousands of randomly generated scenarios to make general statements about over-
adjusting in logistic regression. Our results show that in general, adding non-confounders to the regression model decreases
the mean squared error for non-null exposure effects. The probability of both type I and type II errors also decrease with
addition of more covariates given that all true confounders are controlled for.

1 Introduction

In July 2020, Williamson et. al published a paper analyzing factors associated with death from COVID-19 [18]. The study
consisted of over 17 million patients’ information from the OpenSAFELY platform. From the study they found COVID-19
related deaths to be associated with being male, older age, severe asthma, diabetes, and a series of other medical conditions.
To that date, the study had been the largest of its kind in relation to COVID-19 information. Aside from patient age and
gender, which had previously been determined as strong factors related to COVID-19 related deaths, the study included
21 additional factors in its analysis including: age, sex, BMI, smoking status, ethnicity, IMD quintile, blood pressure,
respiratory disease (not including asthma), asthma, chronic heart disease, diabetes, cancer (non-hematological), hematological
malignancy, reduced kidney function, liver disease, stroke/dementia, other neurological disease, organ transplant, asplenia,
rheumatoid/lupus/psoriasis, and other immunosuppressive condition.

Though the paper was praised for its large study size, it gained a lot of criticism as well for ”over-adjustment”. The
adjusted effects of smoking led to a lot of confusion, finding that smoking actually reduced the hazard of death compared
to non-smokers (HR= .89, 95% CI = .82− .97). This interpretation sparked much criticism and debate on the methods for
modeling and the unexpected results were believed to be caused by over-adjusting in the model. Specifically, by including
a large number of covariates the authors failed to account for the presence of confounders in the model and that by over-
adjusting for the covariates they masked true effects of certain covariates.

The term over-adjustment has been defined in many ways, from Breslow (1982) who said, “Statistical adjustment by an
excessive number of variables or parameters, uniformed by substantive knowledge. It can obscure a true effect or create an
apparent effect when none exists” [2]. Or the later definition by Greenland, Pearl, and Robins (1998), “intermediate variables,
if controlled in an analysis, would usually bias results towards the null, such control of an intermediate may be viewed as a
form of over-adjustment” [6]. Ultimately over-adjustment can be viewed as any regression adjustment that results in either
an increase in net bias or a decrease in precision. [14]

When planning an observational study it is important to account for any factor that may have an influence on the outcome
or exposure. A confounder or confounding factor can be identified by three criteria: 1) the exposure of the study is determined
to be associated with the confounder, 2) the outcome remains associated with the confounder even among the unexposed,
and 3) the confounder itself is not an intermediate factor [8]. When deciding on a study design it is important to address
any known confounders and decide which to control for. However, often it is not possible to accurately choose the true set
of confounding variables to adjust for [17].
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When there are many possible covariates present, total knowledge of all causal paths are not available, and other methods
are used to determine which covariates to adjust for, such as the ”common cause method”. With this approach the researcher
adjusts for all pre-exposure covariates with known common causes to the exposure and outcome of interest. However, if the
set of confounding variables is not known, the researcher is likely to control for an incorrect set of confounders, which may
introduce bias [3] [17].

Prior knowledge, or causal inference, allows the researcher to define exactly what effects they seek prior to the start of
analysis, often accomplished with the use of directed acyclic graphs. Directed acyclic graphs (DAGs) are often used to express
directional causal effects of one variable to another. DAGs have become increasingly popular in applied health research as
they help researchers identify factors such as confounders and colliders that may introduce bias into a study. While several
statistical methods exist to leverage DAGS, the most common adjustment for confounders is including them in multivariable
regression models. The effects of omitting and adjusting for true confounders has been intensely studied, however the effect
of adding non-confounders after all confounders have been included in a regression model has yet to be studied. Specifically,
we investigate over adjustment, characterized by including more covariates than necessary to explain an exposure-outcome
relationship [7], rather than overfitting which is characterized by poor prediction and misbehaved standard error [11] [5] [16].

In a study by Robinson and Jewell (1991), they explored the potential effects of adjusting for non-confounders, or over-
adjusting, by the addition of a single non-confounder to a model containing only the outcome and exposure [13]. In the case
of a classic linear regression model, Robinson and Jewell (1991) showed that the adjustment of non-confounders increased
the precision of the model. However, given a logistic regression model, they showed that adjusting for non-confounders lead
to either a decrease or no change in precision. We will extend the exploration of Robinson and Jewell (1991) by controlling
for the set of true confounders and different numbers of additional non-confounders.

The remainder of the paper is outlined as follows. In section 2 we will discuss a motivating example and introduce
equations and notations to explain model fitting. In section 3 we will explain the simulation design of our study including
how random simulation scenarios were obtained, and how random datasets were generated from these scenarios. 1,000 random
scenarios were generated under differing numbers of true confounding variables to explore general trends of over-adjustment,
rather than picking a few scenarios and generalizing conclusions based on those. In section 4 we will examine the results of
our simulations in terms of how adding unneeded covariates to logistic regression models affects exposure effect mean squared
error and hypothesis testing. A discussion of our findings will be presented in section 5.

2 Motivating Examples and Methods

In this section we are going to describe over-adjustment via an example. We will then discuss over-adjustment in general
and what we will explore in this manuscript.

Figure 1: Causal Diagram: Here E is the exposure of interest, Y in the binary outcome, and U1, U2, U3, U4 are potential
binary confounding variables for E. Only U3 is a true confounder in this setting. U4 is related to outcome, but not exposure.
U1 is related to exposure, but not outcome. U2 is not directly related to either exposure or outcome.
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Figure 1 displays an example of a true DAG in the relationship between several binary covariates, a binary exposure, and
a binary outcome variable. Arrows indicate a causal effect for each pair of variables while straight lines indicate correlation
between the variable pairs. Here U1, U2, U3, and U4 are measured potential binary confounders where U3 is the only true
confounder, affecting both the exposure (E) and outcome (Y ). Y is determined from some true logistic regression model
between E and U3. Figure 1 could represent the logistic regression on outcome of:

logit(P [Yi = 1|Ei, U3i]) = βtrue
0 + βtrue

E Ei + βtrue
3 U3i + βtrue

4 U4i

U1 and U2 do not have a direct effect on Y . U1 is not a confounder but does affect E, and U4 is also not a confounder but
does affect Y , although they are correlated with U3. U2 is simply correlated to U1 and U3 but has no direct effect on E or
Y . Returning to the motivating example involving COVID-19 [18], E would denote smoking status, and U1, U2, U3, U4 could
represent some of the other binary covariates that were adjusted for (i.e. sex, ethnicity, respiratory disease (not including
asthma), asthma, chronic heart disease, diabetes, cancer (non-hematological), hematological malignancy, reduced kidney
function, liver disease, stroke/dementia, other neurological disease, organ transplant, asplenia, rheumatoid/lupus/psoriasis,
and other immunosuppressive condition ). Our primary concern of this paper is to analyze what happens when non-
confounders (i.e. U1, U2, U4) are added to the true logistic regression model in addition to U3, in terms of estimating βtrue

E .
For example, if we fit a logistic regression model with U1i, U2i, U3i, U4i, Ei:

logit(P [Yi = 1|U1i, U2i, U3i, U4i, Ei,βββ]) = β0 + βEEi + β1U1i + β2U2i + β3U3i + β4U4i,

the addition of the variables U1, U2, U4 would be considered over-adjustment and possibly may hurt estimation of βtrue
E .

Here U3 was correctly adjusted for as it is a confounding variable in figure 1. This would explore whether criticisms of
over-adjustment as it related to the result showing smoking being protective of COVID-19 death were valid [18]. In this
paper we investigate if the effects of over-adjustment improve if one or two of U1, U2, U4 are added to the model, after U3 is
appropriately controlled for. The goal of this paper is to investigate whether adding unnecessary confounders hurts the mean
squared error and hypothesis testing for E → Y relationship, i.e. the estimation of βtrue

E using β̂E from the following models:

1. Where only Ei, U3i are included in the assumed logistic regression model. This is the model where only confounders
are included.

2. Where Ei, U3i are included and one of U1, U2, U4 in the assumed logistic regression model. The inclusion of one of
these covariates would be over-adjustment as they do not effect both the exposure of interest and outcome.

3. Where Ei, U3i are included and two of U1, U2, U4 in the assumed logistic regression model.

4. Where Ei, U3i are included and U1, U2, U4 are included as well in the assumed logistic regression model.

In our simulation study we fit logistic regression models analogous to models 1-4 with p = 14 binary covariates under
consideration and 3 and 6 true confounding variables for the E → Y effect.

We investigated whether the change in estimation and hypothesis testing of H0 : βE = 0 worsens for the enumerated
examples above. In general, if there are p potential binary covariates to adjust for, we begin by including all true confounders
in the model then sequentially adding non-confounders to our multivariable logistic regression model. Without loss of
generality, assume that the pc true confounders are denoted by U1, ..., Upc . An assumed logistic regression model with no
additional non-confounders included can be written in general as

logit(P [Y = 1|Ei,UUU i,βββ]) = β0 + βEEi +

pc∑
k=1

βkUki. (1)

In this equation we consider all the true confounders in the model. In each simulation replication, pex extra non-
confounders are added to the regression model (1). We investigate the effect of varying the number of non-confounders in
the model (i.e. pex = 1, ..., p− pc) via the following logistic regression model

logit(P [Y = 1|Ei,UUU i,βββ]) = β0 + βEEi +

pc∑
k=1

βkUki +

pc+pex∑
k=pc+1

βkUki (2)

Our goal is to determine if inference on βtrue
E worsens as pex increases in (2).
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3 Simulation Study Design

To analyze the effects of adding non-confounding variables to a logistic regression model we performed four sets of simulations
across 1,000 randomly generated simulation scenarios. For each of these scenarios, 1,000 randomly generated data sets were
obtained and operating characteristics were explored for various over-adjusted models. For each simulated dataset, we
sequentially added each additional non-confounding covariate to the model and analyzed the affects of over-adjustment. We
explored this in the setting of p = 14 binary covariates and one exposure of interest. We investigated settings where there
were pc = 3 and pc = 6 true confounding variables for that exposure.

We will begin by introducing our true model and its components, which was used to generate dataset replications for
a given simulation truth. Next we will discuss the steps taken to generate the parameters for a given simulation scenario.
Additional steps were taken to correct for marginal separation and lack of variability issues, which is also described in this
section. Summary statistics related to the randomly generated scenarios will be displayed graphically to give an idea of the
simulation truths explored. For all simulation scenarios, the true logistic regression model can be written as:

logit(P [Yi = 1|U1i, ..., Upi, Ei,β
trueβtrueβtrue]) = βtrue

0 + βtrue
E Ei +

p∑
k=1

βtrue
k Uki. (3)

Here βtrue
0 is our linear intercept, and βtrue

E is our regression coefficient for the effect of our exposure variable Ei on
outcome Y . βtrue

k is the effect of a potential confounder Uk on Y . During scenario generation, some βtrue
k were set to 0,

indicating the corresponding Uk does not have an effect on our coutcome Y . Similarly, some correlations between E and Uk

were set to 0 indicating that Uk is not related to exposure. We will examine the effects of adding additional non-confounders
where βtrue

k = 0 or cor(E,Uk) = 0, i.e. Uk is not a confounder, by sequentially adding non-confounders and examining

regression estimates β̂E under each assumed logistic regression model.
The multivariate relationship between (Ei, U1i, ...Uki) was characterized by a continuous (p+ 1) continuous latent vector

ZiZiZi similar to an approach first discussed by Albert and Chib for Bayesian analyses, and closely followed a multivariate method
described by Papathomas [1] [10]. We assumed that ZiZiZi comes from a multivariate normal distribution with mean Φ (πππtrue)
and covariance matrix Σtrue. Here πππtrue is defined as a vector of the marginal probability of each binary covariate and the
exposure. In our generation, some of the entries of the covariance matrix Σtrue will be set to zero, indicating Zji and Zki are
not correlated. For each simulated observation, we generated ZZZi ∼ MVN(Φ (πππtrue) ,Σtrue) and set Uki = 1 if Zki > 0, (i.e.
Uki = I[Zki > 0]) which characterized the multivariate relationship of Ei and UUU i through πππtrue and Σtrue. After obtaining
UUU i and Ei for each simulated observation, we generated Yi from a Bernoulli distribution with probabilities derived from
(4). This concludes how we generated data for each observation within a given scenario, which was done 1,000 times in all
simulation scenarios for various sample sizes.

To analyze the effects of adding non-confounders to the logistic regression model, we took a general approach by randomly
generating parameter settings, rather than investigating results over a few chosen simulation settings. We explored settings
with p = 14 binary covariates and one exposure variable of interest. We performed two sets of simulations, one with pc = 3
true confounding variables, and one with pc = 6 true confounding variables. This allowed addition of up to 11 and 8 non-
confounding variables, respectively. The goal of this study is to determine whether increasing the number of non-confounding
variables adjusted for increases mean square error (MSE) or the average z-statistic for testing no exposure effect (i.e. increases
type I error rates or power), as these were contentions in criticisms of Williamson et al (2020) [18]. For pc = 3, pc = 6, we
randomly generated 1,000 random values of πππtrue, Σtrue, and βββtrue. These constituted 1,000 random simulation truths, which
were used to generate 1,000 random datasets for each simulation truth.

We first generated a random vector πππtrue (the marginal probability of each covariate) from a uniform distribution with
minimum and maximum values of 0.1 and 0.9, respectively. We chose these boundaries to avoid binary covariates that
marginally occurred very frequently or rarely. We generated Σtrue from a Wishart distribution, Σtrue ∼ Wp(Σ0), since it
gives symmetric positive-definite matrices which are required for the multivariate normal distribution on the latent vector
ZiZiZi [19]. Σ0 was constructed as a diagonal matrix with entries drawn from a uniform (0, .05) distribution. We instituted
regulatory steps where low matrix values in the first row and first column, (|Σtrue

Ek | < 0.1 and |Σtrue
Ek | < 0.1), which we

considered to be low or negligible correlations, were set to 0. The resulting Σtrue matrix, under these restrictions, was tested
for positive definiteness, since adding sparsity may violate positive definiteness. We repeatedly generated the matrix Σtrue

repeatedly until positive definiteness was achieved.
We generated all βtrueβtrueβtrue values, (βtrue

0 ,βtrue
E , βtrue

1 , ..., βtrue
p ), from a standard normal distribution. We then determined

how many values of βββtrue should be set to 0, indicating no relationship between those covariates and outcome, by first
randomly drawing a value δ from a discrete uniform distribution on the set pc, ..., p. Afterwards, δ randomly chosen values
of βtrue

1 , ..., βtrue
p were set to 0. If both βtrue

k and Σtrue
Ek values are not equal to zero, this indicates the covariate Uk us is a

true confounder for our exposure E. Our number of true confounders, pc, is defined as
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pc =

p∑
k=1

I[βtrue
k �= 0 & ΣEk �= 0].

We repeated this process until we had pc = 3 and pc = 6, respectively. We performed an additional check to address
issues with non-variability of binary random variables and whether marginal separation was present. Marginal separation is
defined by the existence of some cutoff c where all Yi = 1 when a covariate is greater than c and all Yi = 0 otherwise (or vice
versa) [9]. In general, separation can occur when any linear combination of covariates can lead to a situation where some
cutoff value c discriminates between Yi = 1 and Yi = 0 using that linear combination of covariates. Here, we only checked
for marginal separation, i.e. whether each covariate individually leads to separation - as checking for separation caused by
linear combination was not possible. This allowed us to study cases where apparent marginal separation was not present and
there was no need for Firth’s correction [4].

A checking system was put in place to remove any generated parameter settings that caused separation and no variability.
Scenarios that resulted in no variability in any entry of (E,U1, ..., U14, Y ) were removed. For 1,000 randomly generated
datasets with a given simulation truth, we created a contingency table for the generated Y responses and each column of the
data matrix (E,U1, ..., Up) entry. If any cell of the 2x2 table contained a 0, indicating marginal separation, that simulation
scenario was discarded. We did this because it’s known that separation leads to unreasonable effect estimates [9]. This
separation check was conducted under n = 1, 000 observations. It was not possible to generate non-pathological scenarios
under smaller sample sizes (i.e. n = 200) with this many covariates, so we restrict this paper to exploration of over-adjustment
effects in larger populations of n = 1, 000 and n = 10, 000.

Collectively, this process resulted in 1, 000 randomly generated scenarios for pc = 3 and pc = 6 true confounding variables.
This resulted in 1,000 random Σtrue and βββtrue setting. These parameter settings were used for both sample sizes of one
and ten thousand. Figure 2 displays several empirical densities of parameters related to each scenario, including the average
proportion of events for n = 1, 000, the average magnitude of the βtrue

k values for confounding variables, the average magnitude
of the Σtrue

Ek values for confounding variables, and a histogram displaying the randomly generated number of non-confounders
of each type for pc = 3 true confounders. These three types of non-confounders are those related to outcome only (i.e. U4 in
Figure 1), those related to exposure only (i.e. U1 in Figure 1), and those related to neither (i.e. U2 in Figure 1).

The top left of figure 2 displays the density of the randomly generated E(Y |E,UUU) across the 1,000 randomly generated
scenarios for pc = 3, 6 true confounders. Most of the density is concentrated around .5, which is an artifact of βtrue

0 ∼ N(0, 1)
for each random scenario. A summary of E(Y |E,UUU) is (min, .25 quantile, mean, .75 quantile, max) = (.07, .35, .50, .64. .94)
for pc = 3 and (.06, .36, .51, .66, .94) for pc = 6. The top right of figure 2 displays the densities of the average |βtrue

k | values
for confounding variables across the 1,000 randomly generated scenarios. There is a greater discrepancy between pc = 3 and
pc = 6 for these average magnitudes than for E(Y |E,UUU) with pc = 6 having a higher density around .8. The summaries of
the values of |βtrue

k | for the confounding variables was (.13, .62, .77.91, 1.81) for pc = 3 and (.24, .65, .77, .89, 1.50) for pc = 6.
The densities of the 1,000 randomly generated average |Σtrue

Ek | for true confounders is shown in the bottom left of figure
2. There is a clear rightward shift of the density for pc = 6 confounders. The summaries for these true values of |Σtrue

Ek |
were rather close being (.11, .14, .17, .18, .32) for pc = 3 and (.12, .16, .18, .20, .31) for pc = 6. The reader should note that all
1,000 randomly generated |Σtrue

Ek | for confounding variables are above .10 which reflects the way that random scenarios were
generated, i.e. setting all |Σtrue

Ek | < .10 to 0 - making it a non-confounder. Lastly, the distribution on the number of each type
of non-confounding variable is shown in the bottom right of figure 2 for pc = 3. This figure shows that about 38 % of randomly
generated simulation scenarios have ≥ 7 non-confounders which are only related to outcome, otherwise this distribution is
even across 1-6 outcome-only non-confounders. About 30% of the scenarios had 1 exposure-only non-confounder, while 27%
had 2 exposure-only non-confounding variables. The number of non-confounding variables that weren’t related to exposure
or outcome was 9− 18% across all configurations.

4 Simulation Results

In this section we will discuss the results from the simulations study and examine the effects of adding true non-confounders
to the logistic regression model. Since there are p = 14 covariates excluding the exposure E, there are 14− 3 = 11 possible
non-confounders that can be added when pc = 3 and 14 − 6 = 8 possible non-confounders that can be added when pc = 3.
We investigate operating characteristics related to estimation accuracy and hypothesis testing for different numbers of non-
confounders added to the model, i.e. pex = 0, ..., 14− pc. For each of the 1, 000 randomly generated simulation scenarios, we

randomly generate 1, 000 datasets and compute β̂E and ŜE
(
β̂E

)
for each choice of pex and each random dataset. For the

bth randomly generated dataset, we compute the squared error as

MSEb =
(
β̂E − βtrue

E

)2

,
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Figure 2: Summary of randomly generated simulation scenarios. (top left) The density of the average proportion of Y = 1
across the random scenarios, (top right) Density of average magnitude of βtrue

k for confounding variables for a given simulation
scenario, (bottom left) Density of average magnitude of Σtrue

Ek for confounding variables for a given simulation scenario, (bottom
right) Distribution of the different types of non-confounders across the randomly generated scenarios for pc = 3.

for each choice of pex. Then we average over 1,000 random datasets to obtain the mean squared error (MSE) for a
given scenario. According to the theory posited by Robinson, with very large sample sizes the bias will go down with over-
adjustment while the standard error will go up [13] - but ultimately, they believe the MSE will go down because the bias will
go down faster than standard error will go up.

We also look at two versions of the z-statistic for testing H0 : βE = 0, i.e. that Ei has no effect on Yi. For this
hypothesis test, we look at one z-statistic when the null is true (βtrue

E = 0) and one under the alternative where the null is
false (|βtrue

E | > 0.1). To do this we performed an additional set of each sample size and pc and set βtrue
E = 0. Within a given

simulation scenario, for the bth randomly generated dataset, we compute

Z − statisticb =

∣∣∣β̂E

∣∣∣
ŜE(β̂E)

then we average over the 1,000 datasets to obtain ZNull (when βtrue
E = 0) and ZAlt (when |βtrue

E | > .1). This process is
done for each of the 1, 000 randomly generated scenarios for pc = 3, 6 and both sample sizes. We display the average values
of MSE under the null and alternative and the average values of |ZNull|, |ZAlt| across the randomly generated scenarios in
figure 3.

The top 4 figures display average trends in MSE and the magnitude of the z-statistic under cases where βtrue
E �= 0. For

the z-statistic magnitude, this is only computed when |βtrue
E | > .1 to avoid cases where βtrue

E ≈ 0. We see that for the top
row, where n = 1, 000 and pc = 3, the MSE drops from .081 with pex = 0, i.e. no non-confounders added, to .071 for pex = 6
which then levels off. For p6 there was a similar pattern, with average MSE dropping from .078 with pex = 0 to .071 for
pex = 4, which is maintained. For each choice of pex from 1 to 8, the simulations with pc = 6 true confounders had lower
average MSE than for pc = 3 true confounders. For n = 10, 000, there is a monotone decreasing trend in average MSE as
pex increases for both pc = 3, 6. The decrease in MSE was bigger for n = 10, 000 (.03) compared to n = 1, 000 (.01) as pex
increases, suggesting that the estimation benefit for over-adjustment is larger for larger sample sizes.. Similar to n = 1, 000,
the average MSE is lower for pc = 6 than pc = 3 when n = 10, 000. In cases where |βtrue

E | > .1 the average magnitude of
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Figure 3: Simulation Results: Average MSE and magnitude of the Z-statistic testing H0 : βE = 0 across the 1,000 randomly
generated scenarios. This is shown for pc = 3, 6, n = 1, 000, n = 10, 000 and simulations were βtrue

E �= 0 (Non-null) and
βtrue
E = 0 (Null).
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the z-statistic increases as pex increases for both n = 1, 000, 10k. Interestingly, the |ZAlt| values are higher for pc = 3 true
confounders compared to pc = 6 true confounders, but in general the average test statistics are above 3.8 for n = 1, 000 and
11.8 for n = 10, 000 suggesting a high likelihood of rejecting the null hypothesis in general based on a Wald test critical value
of 1.96.

These trends for the null cases, where βtrue
E = 0, are shown in the bottom four graphs of figure 3. For n = 1, 000, we see

a reversal of the trend when βtrue
E �= 0 - that average MSE actually increases as pex increases. This increase is smaller for

pc = 6 when adding additional covariates.
For n = 10, 000 we see a downward trend in MSE for both pc = 3, 6 which decreases faster with pc = 6. For smaller pex

the average MSE was higher for pc = 6 which is reversed when pex ≥ 6. We see a similar crossing trend for |ZNull| for both
sample sizes, with average pc = 6 values being higher (lower) than pc = 3 for pex < 5 (pex ≥ 5). The average |ZNull| values
decrease as more non-confounders (i.e. pex) are added and are below 1.3 for n = 10, 000 and .9 for n = 1, 000. All of the
average |ZNull| values are lower than the Wald test critical value of 1.96, indicating that the null hypothesis will most likely
be upheld.

These results collectively suggest that estimation of βE improves as pex increases except with a moderate sample size and
null exposure effect. Hypothesis testing becomes more conservative as pex increases when there is a null exposure effect, which
counters over-adjustment criticisms about the paper by Williamson et al (2020) [18]. The |ZAlt| values also increase as pex
increases, suggesting an improvement in the power as more unneeded non-confounders are added to the logistic regression.

Figure 4: Operating characteristics in rare events, when E(Y |E,UUU < .2) or E(Y |E,UUU > .8).

Figure 4 displays the non-null MSE values and |ZNull| values for cases where E(Y |E,UUU) < .2 or E(Y |E,UUU) > .8, which
are rare and common events. For n = 1, 000, the non-null MSE remains mostly constant as pex increases for both pc = 3, 6,
whereas the MSE decreases with pex for n = 10, 000. For smaller pex, MSE is actually higher for pc = 6 which is then
flipped.

Similar to figure 3, average |ZNull| decreases as pex increases - suggesting again that criticisms of over-adjustment in
Williams et al (2020) may not be appropriate [18]. These values were below .9 for n = 1, 000 and 1.2 for n = 10, 000 which
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are below the 1.96 critical value. Though not shown here, there was a slight upward trend in |ZAlt| for pc = 6 for both sample
sizes, but not much of a change for pc = 3. All of these values were above 9, indicating a high likelihood that the hypothesis
test of no exposure effect would be rejected.

n = 1, 000 Neither Outcome/exposure Outcome Only exposure Only

pex MSEAlt |ZNull| MSEAlt |ZNull| MSEAlt |ZNull|
0 0.078 (0.131) 0.838 (0.090) 0.078 (0.132) 0.839 (0.091) 0.076 (0.129) 0.833 (0.082)
1 0.075 (0.128) 0.829 (0.076) 0.076 (0.129) 0.832 (0.081) 0.074 (0.126) 0.825 (0.070)
2 0.073 (0.126) 0.824 (0.068) 0.074 (0.127) 0.827 (0.073) 0.073 (0.125) 0.820 (0.061)
3 0.072 (0.125) 0.819 (0.058) 0.073 (0.126) 0.823 (0.067) 0.072 (0.124) 0.816 (0.054)
4 0.072 (0.124) 0.815 (0.050) 0.072 (0.125) 0.820 (0.060) 0.072 (0.124) 0.814 (0.048)
5 0.072 (0.124) 0.812 (0.044) 0.072 (0.124) 0.817 (0.054) 0.072 (0.124) 0.811 (0.043)
6 0.072 (0.124) 0.810 (0.040) 0.071 (0.124) 0.814 (0.048) 0.072 (0.124) 0.810 (0.039)
7 0.072 (0.124) 0.808 (0.035) 0.072 (0.124) 0.812 (0.043) 0.072 (0.124) 0.810 (0.039)
8 0.072 (0.124) 0.807 (0.031) 0.072 (0.124) 0.810 (0.040) 0.072 (0.124) 0.807 (0.032)
9 0.072 (0.124) 0.805 (0.027) 0.072 (0.124) 0.807 (0.033) 0.072 (0.124) 0.806 (0.027)
10 0.072 (0.124) 0.809 (0.038) 0.072 (0.125) 0.804 (0.022) 0.072 (0.125) 0.804 (0.020)
11 0.072 (0.125) 0.804 (0.020) NA (NA) NA (NA) NA (NA) NA (NA)

n = 10, 000 Neither Outcome/exposure Outcome Only exposure Only

pex MSEAlt |ZNull| MSEAlt |ZNull| MSEAlt |ZNull|
0 0.023 (0.061) 0.839 (0.094) 0.024 (0.062) 0.839 (0.092) 0.020 (0.053) 0.833 (0.085)
1 0.017 (0.047) 0.829 (0.078) 0.019 (0.051) 0.832 (0.082) 0.015 (0.04) 0.825 (0.070)
2 0.014 (0.038) 0.824 (0.068) 0.016 (0.043) 0.827 (0.074) 0.012 (0.032) 0.820 (0.061)
3 0.011 (0.028) 0.819 (0.058) 0.013 (0.036) 0.824 (0.068) 0.010 (0.024) 0.816 (0.054)
4 0.009 (0.020) 0.815 (0.050) 0.012 (0.030) 0.820 (0.064) 0.009 (0.019) 0.814 (0.048)
5 0.008 (0.015) 0.812 (0.044) 0.010 (0.023) 0.817 (0.056) 0.008 (0.015) 0.811 (0.043)
6 0.008 (0.012) 0.810 (0.040) 0.009 (0.017) 0.815 (0.052) 0.008 (0.012) 0.810 (0.039)
7 0.007 (0.010) 0.808 (0.035) 0.008 (0.014) 0.812 (0.045) 0.007 (0.011) 0.810 (0.039)
8 0.007 (0.008) 0.807 (0.031) 0.007 (0.011) 0.81 (0.041) 0.007 (0.008) 0.807 (0.032)
9 0.006 (0.007) 0.805 (0.027) 0.007 (0.008) 0.807 (0.033) 0.006 (0.007) 0.806 (0.027)
10 0.007 (0.009) 0.809 (0.038) 0.006 (0.005) 0.804 (0.022) 0.006 (0.005) 0.804 (0.020)
11 0.006 (0.005) 0.804 (0.020) NA (NA) NA (NA) NA (NA) NA (NA)

Table 1: Simulation results for models with pc = 3 true confounders, n = 1, 000 and n = 10, 000, and various choices of pex.
The mean operating characteristics and standard deviation were calculated for intervals of the number of non-confounders
added (pex). The Z-statistic for simulation results with βtrue

E = 0 (ZNull) andMSE when βtrue
E �= 0 (MSEAlt) were calculated.

We have shown in general that non-null MSE decreases in large sample sizes as pex increases and that over-adjustment
concerns about type I errors are unsubstantiated. In table 1, we investigate these two trends in terms of how adding different
types of non-confounders are over-adjusted for. These types of non-confounders are those related to outcome only, exposure
only, and neither outcome nor exposure. In this table, we also report the standard deviation of these operating characteristics
across the 1,000 randomly generated scenarios. It should be noted that when we look at models that add non-confounders
of each type, we could potentially have already added non-confounders that are related to outcome or neither. For example,
models that have 2 extra non-confounders that are only related to exposure may also have a non-confounder related to
outcome only included as well.

For MSEAlt and n = 1, 000, we see a similar decreasing followed by leveling off trend as pex increases for each of the
3 types of non-confounders. We see a monotone decreasing trend for n = 10, 000 and the three different types of non-
confounders. For n = 1, 000, the standard error on the MSEAlt values is mostly constant, with a slight increase when no
additional non-confounders are adjusted for. For n = 10, 000, the standard error goes down as pex increases, suggesting
that the bias of the estimates β̂E and their variability decreases with pex - which is an appealing feature. This holds for all
three non-confounding types. We see a monotone decreasing trend in average |ZNull| values and their standard deviation for
each of the three non-confounding types and both n = 1, 000, n = 10, 000. This decrease is faster for adding exposure only
non-confounders than the other two types for both n = 1, 000, 10k.

Table 2 displays these same operating characteristics for pc = 6 true confounding variables for exposure. For each of the
three non-confounding types, MSEAlt decreases as pex increases, which is more striking for n = 10, 000. Similar to pc = 3,
the standard error on MSEAlt across the 1,000 randomly generated simulation truths decreases with n = 10, 000 but was
mostly constant for n = 1, 000. Similar to pc = 3, adding non-confounders of each type reduced |ZNull| thereby making

9



n = 1, 000 Neither Outcome/exposure Outcome Only Exposure Only

pex MSEAlt |ZNull| MSEAlt |ZNull| MSEAlt |ZNull|
0 0.074 (0.115) 0.848 (0.102) 0.076 (0.116) 0.860 (0.117) 0.073 (0.115) 0.844 (0.099)
1 0.071 (0.115) 0.831 (0.078) 0.073 (0.115) 0.849 (0.102) 0.071 (0.115) 0.830 (0.077)
2 0.071 (0.115) 0.822 (0.063) 0.072 (0.115) 0.837 (0.086) 0.071 (0.115) 0.822 (0.063)
3 0.070 (0.116) 0.816 (0.052) 0.071 (0.115) 0.828 (0.071) 0.070 (0.116) 0.816 (0.050)
4 0.070 (0.116) 0.812 (0.043) 0.070 (0.115) 0.821 (0.058) 0.070 (0.116) 0.811 (0.041)
5 0.070 (0.116) 0.808 (0.034) 0.070 (0.116) 0.815 (0.047) 0.070 (0.116) 0.810 (0.038)
6 0.070 (0.116) 0.806 (0.027) 0.070 (0.116) 0.809 (0.035) 0.070 (0.116) 0.803 (0.020)
7 0.070 (0.117) 0.803 (0.020) 0.070 (0.116) 0.804 (0.023) NA (NA) NA (NA)

n = 10, 000 Neither Outcome/exposure Outcome Only exposure Only

pex MSEAlt |ZNull| MSEAlt |ZNull| MSEAlt |ZNull|
0 0.018 (0.035) 0.848 (0.106) 0.023 (0.042) 0.861 (0.120) 0.017 (0.033) 0.845 (0.099)
1 0.013 (0.024) 0.831 (0.078) 0.018 (0.033) 0.849 (0.103) 0.012 (0.023) 0.830 (0.082)
2 0.010 (0.018) 0.822 (0.063) 0.014 (0.026) 0.837 (0.088) 0.010 (0.018) 0.822 (0.066)
3 0.009 (0.015) 0.816 (0.052) 0.011 (0.021) 0.828 (0.074) 0.009 (0.014) 0.816 (0.050)
4 0.008 (0.011) 0.812 (0.043) 0.010 (0.017) 0.821 (0.059) 0.008 (0.011) 0.811 (0.041)
5 0.007 (0.008) 0.808 (0.034) 0.008 (0.013) 0.815 (0.048) 0.007 (0.009) 0.810 (0.038)
6 0.006 (0.006) 0.806 (0.027) 0.007 (0.008) 0.809 (0.035) 0.006 (0.004) 0.803 (0.020)
7 0.006 (0.004) 0.803 (0.020) 0.006 (0.005) 0.804 (0.023) NA (NA) NA (NA)

Table 2: Simulation results for models with pc = 6 true confounders, n = 1, 000 and n = 10, 000, and various choices of pex.
The mean operating characteristics and standard deviation were calculated for intervals of the number of non-confounders
added (pex). The Z-statistic for simulation results with βtrue

E = 0 (ZNull) andMSE when βtrue
E �= 0 (MSEAlt) were calculated.

the adjusted exposure-outcome hypothesis test more conservative. This decrease was much slower for outcome-only related
non-confounders. Standard errors of |ZNull| across the 1,000 randomly generated scenarios also decreased as the number of
non-confounders increased.

5 Discussion

Ideally, in a logistic regression all confounders will be accounted and adjusted for. However, in many cases where there are a
large number of potential confounders or little information is known of the exposure of interest, the possibility of adjusting for
all confounders is not likely. In such an instance, scientists may attempt to adjust for potential confounders, this however may
often lead to adjusting for false or non-confounders, a concept known as over-adjustment. While the concept of omitting and
adjusting for confounders has been intensely discussed in studies concerning logistic regression, in this paper we analyzed the
effects of over-adjustment with binary covariates when all true confounders are already adjusted for. We did this across 1,000
randomly generated simulation truths, investigating mean squared error and the average Z statistic magnitude under cases
where the exposure does and does not have an effect on outcome. In general, adding non-confounders improved estimation
of the true exposure effect - other than with a moderate sample size and null exposure effect or in non-null exposure effects.
This trend was not evident for rare outcome events.

When there truly was no exposure-outcome relationship, the average magnitude of the z statistic testing no effect decreased
as more non-confounders were added. This indicates that concerns about over-adjustment in relation to the smoking effect
in the Williamson et al paper may be unwarranted [18]. This is not to argue that smoking does protect against COVID-19
death, but to say that this finding was likely not related to inclusion of too many additional covariates in their assumed
logistic regression model.

We saw that when there was a true exposure-outcome relationship (i.e. null is not true), the average z-statistic increased
in general. This trend was not as evident in rare outcome events. We showed that these trends held in general when adding
non-confounders related only to exposure, only to outcome, or neither.

We did not explore how addition of continuous non-confounding variables affected results in terms of overfitting for two
reasons. The first reason is that many studies coming out today focus on binary predictors (disease related/whatnot). The
second reason was practicality, If we were to consider continuous covariates, we’d need to consider (1) Different distributions
that generated the continuous variables (gamma, normal, etc) and (2) Different functional relationships between those
covariates, the exposure, and the outcome (linear, quadratic, piecewise, other). There could be more exploration in this area
in future research.
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In summary, this paper investigated whether including additional non-confounders negatively impacted exposure effect
estimation and inference, after appropriately controlling for all true confounders. This was done via exhaustive simulation
with varying numbers of true confounders and sample sizes of 1k and 10k. One thousand random scenarios were generated
for each sample size and number of true confounders, while pathological scenarios that resulted in separation or no variability
were removed. Prior to removing these simulation scenarios, the mean results were greatly affected by scenarios where
separation caused poor inference - and we were not interested in exploring Firth’s correction in this paper.
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