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ABSTRACT 

Textbook theory predicts that t-ratios decline towards zero in regressions when there is 

increasing collinearity between two independent variables. This article shows that this rarely 

happens if the two variables are endogenous, and coefficients increase greatly with more 

collinearity. The purposes of this article are 1) to illustrate this bias and explain why it occurs, 

and 2) to use the phenomenon to develop a test for endogeneity. For the test, one creates a 

variable that is highly collinear with the independent variable of interest, and endogeneity is 

indicated if t-ratios do not decline with increasing collinearity. False negatives are possible, but 

not likely. The test is confirmed with algebraic examples and simulations. I give many empirical 

examples of the bias and the test, including testing exogeneity assumptions behind instrumental 

variables and Granger causality. 
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                           A Test for Endogeneity in Regressions  
 

Gauss-Markov assumptions require that independent variables (IVs) be exogenous, but there is 

no test for exogeneity that does not require an assumption of exogeneity, and researchers seldom 

know whether their regression results are biased. This article proposes a test for endogeneity that 

does not require exogeneity assumptions by making use of the relationship between collinearity 

and endogeneity. When endogeneity exists with collinear IVs, as the collinearity increases, with 

limited exceptions, their t-ratios do not decline towards zero. The absolute values of the 

coefficients and t-ratios either increase indefinitely or reach a plateau. Coefficients typically have 

opposite signs. I call this effect “whipsaw” because the two collinear IVs appear to play off 

against each other. Researchers regularly encounter these odd effects when regressions contain 

correlated IV lags or contain an IV and its square, producing coefficients with opposite signs and 

similar t-ratios. The latter is often interpreted as a curvilinear causal effect, but I show that this is 

at most partially true because increasing collinearity seldom reduces t-ratios. Under established 

theory whipsaw does not occur with exogeneity, so its presence indicates endogeneity. Thus, I 

develop a test for whether an IV is endogenous by creating a second IV that is highly collinear 

with the first (henceforth, the first IV is called the “key IV” and the second the “collinear IV”). If 

whipsaw occurs, there is endogeneity.  

As used here, collinearity means high correlation between two variables, and correlations 

close to one (e.g., .99999) are called “extreme collinearity.”  Endogeneity is simultaneity or 

omitted variable bias (OVB). Simultaneity occurs when the dependent variable (DV) causes an 

IV. (Since the subject is regression analysis, “cause” simply means that a change in one variable 

leads a change in another.) It can be divided into three subtypes, which can coexist: 1) direct 



2 

 

simultaneity where the DV causes the IV directly, 2) indirect simultaneity through other IVs in 

the regression, and 3) indirect simultaneity where the DV causes an omitted variable which 

causes the IV (called “OV simultaneity”). OVB occurs when an omitted variable causes both the 

IV and the DV. OVB and OV simultaneity can operate backwards in time. An omitted variable 

can cause the DV and cause an IV at a later time, and the DV can cause an omitted variable that 

causes an IV at a later time.    

 The outline of the article is as follows. The next section discusses relevant theory and 

research concerning collinearity with endogeneity. Section 3 gives algebraic examples of  

whipsaw. Section 4 illustrates whipsaw with simulations. Section 5 contains empirical examples 

of whipsaw and the whipsaw test: entering an IV and its square, using unit trends in panel 

regressions, and examining exogeneity assumptions when using instrumental variables and the 

Granger causation test. Section 6 concludes. 

1. BACKGROUND 

When simultaneity exists, regressions cannot separate the “forward” and “backward” causal 

impacts, mathematical calculations are impossible, and regression coefficients are biased 

(Harnack et al. 2017). Similarly, omitted variables prevent one from disentangling a regression 

coefficient from the impact of omitted variables, which of course are not entered in the 

regression equation, making mathematical calculations impossible. In both cases the error term is 

correlated with an IV, violating Gauss-Markov assumptions.  

The Durbin–Wu–Hausman test, the only common test for endogeneity in regressions, 

entails comparing an OLS coefficient to that of a 2SLS regression in which instruments are used 

for the possibly endogenous IV. If the results differ there is endogeneity. The difficulty is that 
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finding valid instruments is difficult because they must be exogenous to the DV (Hernam & 

Robins 2016; Wooldridge 2021). That is, they cannot be caused by the DV, there cannot be OV 

simultaneity, and there cannot be omitted variables that cause the DV and the instrument. These 

requirements can rarely be empirically verified. In contrast the proposed whipsaw test makes no 

such assumptions. 

 Likewise, strategies for curing or mitigating endogeneity in regressions require 

exogeneity assumptions, such that the strategies have limited utility if one cannot test the 

assumptions. Using lagged IVs, such as the Granger test, under the assumptions that causation 

cannot go backward in time (Granger 1969, Peters et al. 2017, Hoover 2001), encounters 

potential endogeneity problems due to OVB and OV simultaneity (Peters et al. 2017; Maziarz 

2017). 2SLS uses instrumental variables that, among other problems, must be exogenous, and 

thus encounter the problems listed above. The required exogeneity is rarely proven, supported 

only by theory or general knowledge (Martens et al. 2006). The regression discontinuity design 

evaluates programs where there is artificial discontinuity in the treatment application. 

Simultaneity is possible because subjects can tailor their efforts to reach, or not reach, the 

threshold, and OVB is possible because other changes related to treatment effects might occur 

near the threshold (Imbens & Lemieux 2008). Using proxies for omitted variables is inexact and 

impossible if the omitted variables are unknown. 

Traditional theory states that when two IVs become more collinear, standard errors grow 

and t-ratios decline towards zero (Belsley et al. 1980; Wooldridge 2021). Less well known, 

theory also predicts that collinearity biases coefficients; they increase with more collinearity, 

generally moving towards opposite signs (Hill & Atkins 2001). The supposition that collinearity 
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always reduces t-ratios is often questioned. Spanos and McGuirk (2002) found through 

simulations that data characteristics can lead to erratic changes in coefficient and t-ratios as 

collinearity increases. They suggested that this uncertainty can lead to higher t-ratios with more 

collinearity. Mela and Kopalle (2002) argue that collinearity sometimes reduces coefficient 

variance when the two IVs are negatively correlated. Marvell (2010) suggests that coefficient 

sizes and t-ratios increase as collinearity increases when there is reciprocal causation, using 

crime rates and prison population as an example. Winship and Western (2016) show that the 

significance levels of collinear IVs can be exaggerated when the regression is misspecified. 

Goodhue et al (2017) and Kolmos (2020) argue that the combination of collinearity and errors-

in-variables causes Type 1 errors. Chatelain and Ralf (2014) show that a coefficient can be 

significant even though the IV has no relationship with the DV if it is collinear with another IV, 

and the two IVs have outlier observations. Kalnins (2018, 2022), conducted a literature review 

and found that collinear IVs often have sizeable and significant coefficients of opposite signs, 

when theory would suggest they have the same sign. He argues that this can occur when 

collinear IVs share a common factor, and the effect is greater when the common factor accounts 

for more of the correlation between the two. None of these articles have taken the next step and 

used the failure of t-ratios to decline towards zero to test for endogeneity. 

 The following paragraphs show that with more extreme collinearity: 1) IV coefficients 

become larger, even with exogenous IVs. 2) Coefficients switch from the same sign to opposite 

signs, or from opposite signs to the same sign. 3) T-ratios decline towards zero without 

endogeneity. 4) T-ratios rarely decline towards zero with endogeneity because coefficients 
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increase, and standard errors may decline or increase at a lower rate than with exogeneity. These 

are based on three equations.  

 First, using the model y 1x 2z+r with Gaussian assumptions, the coefficient on x is: 

=                                                                            (Equation 1) 

where rxi are the residuals when regressing x on z (plus any other IVs). Their absolute values 

decline with more collinearity. 

 Second, coefficients increase and move towards opposite signs as collinearity increases. 

The covariance of the coefficients is: 

Cov( , ) =
(1 ) ( ) ( )

                                     (Equation 2) 

where x and z. The covariance is 

negative and increases indefinitely at an increasing rate with . Coefficients move towards 

opposite signs if they have the same signs when entered individually. Their absolute sizes 

approach each other (but do not converge) and increase indefinitely (Hill & Atkins 2001, Spanos 

2019, see table 1 below). 

The third equation is textbook theory as to why standard errors increase with more 

collinearity. The 1 is: 

  =   
( ) (1 ) ( 2)

                                                      (Equation 3)   

Where ri are the regression errors,  is the correlation between x and z, and n is the sample size. 

The standard error increases . With non-OV simultaneity ri decline because an IV 
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now includes the DV, increasing the portion of DV variability accounted for (if the IV causes the 

DV). This counteracts the (1- 2) decline, and the standard error declines or increases less than if 

there were no simultaneity. With OVB and OV simultaneity, ri include the effect of omitted 

variables and change in ways that are specific to the data.  

2. ALGEBRAIC EXAMPLES 

This section and the next (simulations) show how whipsaw works. The algebraic examples are 

approximations, not mathematical proofs, showing the impact of the first and second equations 

on coefficients due to endogeneity and extreme collinearity. The examples use the whipsaw test 

format. As will be seen later in the article, increasing coefficient size is usually the major reason 

why t-ratios fail to decline towards zero with endogeneity and increased collinerity. In the first 

example, there is reciprocal causation between the DV and IVs. 

y = c + 1x 2z + e   

x = cx + 3y + ex 

z = cz + 4y + ez 

y = c + 1(cx + 3y + ex) 2(cz + 4y + ez) + e 

y = c 1cx + 1 3y + 2cz + 2 4y + 1ex 2ez + e) 

y = (c 1cx 2cz) + 1 3( 1x 2z + e) 2 4( 1x 2z + e) + (e + 1ex 2ez) 

y = (c 1cx 2cz) + 1
2

3x + 1 2 3z + 1 2 4x + 2
2

4z + (e 1 3e + 2 4e 1ex + 2ez) 

y = (c 1cx 2cz) + ( 1 3 2 4 1x + 1 3 + 2 4 2z + (e 1 3e + 2 4e 1ex + 2ez) 

 
When ostensibly conducting the regression model in the first line, one is instead using the model 

in the last line, biasing c, 1, 2, and e. First, with respect to the coefficients: 
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 From Equation 1:  

( + ) =     

=   
    ( + ) 

  

1 is on both sides, there is an anomaly, and the equation cannot be solved. Equation 2, 

however, enables approximations. With more extreme collinearity 2 - 1 (this is not a limit in 

the usual sense), and 4 3. Thus, ( 1 3 + 2 4 0 1 increases. 1 likely 

increases when  fall below one. I 3 4=0, there is no whipsaw even though there is 

simultaneity. That is, here whipsaw requires that both IVs be functions of y. The constant 

changes beca 1cx 2cz are added. The error term 1 3 + 2 4)e 1ex + 2ez] causes 

bias because it is correlated with the IVs through ex and ez. 

         In the second example, the DV causes one IV, which causes the second IV.  

y = c + 1x 2z + e 

x = cx + 3y + ex 

z = cz + 4x + ez  

y = c + 1(cx + 3y + ex 2(cz + 4x + ez) + e 

y = (c + 1cx +  2cz) + 1 3y 2 4x + e 1ex 2ez 

y = (c + 1cx +  2cz) + 1 3 1x 2z + e 2 4x + e 1ex 2ez 

y = (c + 1cx +  2cz) +  1 3 1x 1 3 2z 2 4x + (e + 1 3e + 1ex 2ez) 

y = (c + 1cx +  2cz) + 1 3 1 2 4)x  1 3 2z + (e 1 3e 1ex 2ez) 

y = (c + 1cx +  2cz) + 1 3 + 2 4 1 1x 1 3 2z + (e 1 3e 1ex 2ez) 
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=   
    ( + / ) 

  

Applying Equation 2, with more extreme collinearity between x and z 2 - 1, and 4 . 

Also, 1 3=1 because (y=c+ 1x 2z+e) (y=c+ 1 3y 2z+ 1ex+e). Thus, 1 3 2 4 1 0. 

Whipsaw does not occur if 4=0 even though there is simultaneity. The constant changes, and the 

error term is correlated with the IVs. 

In Example 3 an omitted variable (o) causes both IVs: 

y = c + 1x + 2z 3o + e 

x = cx + 4o + ex 

z = cz + 5o + ez 

o = (x - cx - ex 4 

y = c 1(cx + 4o + ex) + 2(cz 5o + ez 3o + e  

y = c 1cx + 1 4o 1ex 2cz 2 5o 2ez 3o + e  

y = c 1cx + 1 4(x - cx - ex 4 1ex 2cz 2 5(x - cx - ex 4 2ez 3(x - cx - ex 4 

         + e 

y = c 1cx + 1x - 1cx - 1ex 1ex 2cz 2 5x 4 - 2 5cx 4 - 2 5ex 4 2ez 3x 4 

      - 3cx 4  - 3ex 4  + e 

y = (c 2cz - 2 5cx 4 - 3cx 4) + 1x 2 5x 4 3x 4 + (e + 2ez - 1ex 1ex - 3ex 4  

       - 2 5ex 4 ) 

y = (c 2cz - 2 5cx 4 - 3cx 4) + 2 5 1 4 3 1 4 1x + (e + 2ez - 2 5ex 4 - 3ex 4) 
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With more extreme collinearity 2 - 1, and 5 4 3=0, creating OVB. Thus (1 

+ 2 5 1 4 3 1 4 - 5 4 3 1 4) 1 increases. The constant changes, and 

the error term is correlated with the IVs. 

In example 4 the omitted variable causes one IV, and that IV causes the second IV. 

y = c + 1x + 2z 3o + e 

x = cx + 4o + ex 

z = cz + 5x + ez  

o = (x – cx -  ex 4 

y = c + 1(cx + 4o + ex) + 2(cz + 5x + ez) 3(x - cx - ex 4 + e 

y = c + 1cx + 1 4o + 2cz +  2 5x 3 4)x + 3 4)cx +e 1ex - 3ex 4 + 2ez 

y = (c + 1cx + 2cz 3cx 4) + 1 4(x - ex 4 + 2 5x 3x 4 + e - 1ex - 3ex 4 1ex + 2ez 

y = (c + 1cx + 2cz 3cx 4) + 1x + 2 5x 3x 4 + (e - 3ex 4 + 2ez) 

y = (c + 1cx + 2cz 3cx 4) + 1(1 + 2 5 1 3 1 4)x + (e - 3ex 4 +  2ez) 

2 - 1, and 5 , 3=0, creating OVB. 

(1+ 2 5 1 3 1 4)  0 1 increases. 5= 0, there is no whipsaw. The constant changes, 

and the error term is correlated with the IVs. 

 Four algebraic examples do not establish a pattern, but they do show potential harmful 

consequences of endogeneity with collinearity between IVs. Coefficients increase greatly with 

more collinearity. The constants change, such that slopes change, and coefficients are biased. 

The error term is correlated with the IVs.  
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3. SIMULATIONS OF SIMULTAINITY AND OVB 

The purposes of the simulations are to illustrate further why t-ratios fail to approach zero with 

endogeneity and extreme collinearity and to explain why the whipsaw test can fail to detect 

endogeneity. The simulations are OLS regressions with a sample size of 10,000, using STATA. 

The simulation equations are at the end of the tables. The DV is y, the key IV is x, and the 

collinear IV is z. Lower-case letters are random variables, normally distributed, with means of 

ten, and standard deviations are separate uniform random variables between one and two, except 

that w, which is used to create whipsaw, has a standard deviation of one. 

   I create collinearity two ways, the “K method” and the “exponent method.” The first is 

used with simulations and the second with empirical data. In the K method, the collinear IV is 

the key IV plus K times a random variable (w), where K is an increasingly small number in 

successive regressions. The range here is K=10 to K=.001, and correlations range from near zero 

to more than .99999. This large range helps illustrate how whipsaw works. The disadvantage is 

that results vary greatly with different w’s unless the number of observations is very large. 

  In the exponent method the collinear IV is the key IV taken to a power slightly above 

one, here 1.02, producing correlations of about .99999. The exponent of 1.02 is chosen because 

results are virtually the same as those with smaller exponents in the empirical examples. Since 

even an IV and its square are highly correlated, the exponent method does not enable one to 

compare low collinearity to high collinearity situations. 

 Table 1 illustrates theory that t-ratios decline with more collinearity. Coefficients increase 

in opposite directions because covariances are negative and increase (Equation 2). The standard 
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errors, proportional to the square root of r2/(1- 2) (Equation 3), increase because r2 does not 

change. T-ratios decline because standard errors increase more than coefficients increase. 

Table 2 is an example of whipsaw where the DV causes one IV, and that IV causes the 

second. This is an unlikely situation empirically because the IVs do not cause the DV, but it 

illustrates well the workings of whipsaw. Coefficients and t-ratios increase greatly with more 

collinearity. Of course, the whipsaw effect is less pronounced with fewer observations and with 

less impact of y on x. With n=200, x=y*.1+b*.001, and K=.001, the coefficients on both x and z 

are 254, with standard deviations of 86. 

 Whipsaw does not occur without b*.001 because it prevents rx and rz from falling 

towards zero with extreme collinearity. That is, when x=z+rx, rx decline to zero, but not when 

x=z+b*.001+rx, and the denominator in Equation 1 falls at a slower pace with more collinearity 

than rxy when rx fall below one. Whipsaw in table 2 is greater (coefficients and t-ratios increase) 

when .001 is changed to a larger fraction, and it still occurs if .0001 is substituted for .001. Table 

2 results are similar when y*.001 is substituted for b*.001. Thus, here whipsaw requires that the 

collinear IV be caused directly or indirectly by the DV independently of the key IV. In empirical 

studies, one does not know whether this condition occurs, but the fact that the causal 

relationships need only be very small suggests that the whipsaw test is unlikely to have false 

negatives. 

 The main difference between tables 1 and 2 is the greater coefficient increase with more 

collinearity in table 2 because rxy/n and rzy/n decline less due to the lesser decline in rx and rz 

(again, due to the presence of b*.001).  
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 Table 3 simulates reciprocal causation between the DV and IVs.1 The results are similar to table 

2, and coefficients increase for the same reason they do in table 2. 

            Turning to OVB, in table 4 the omitted variable causes the key IV, which causes the 

collinear IV. Coefficients and t-ratios increase indefinitely. Whipsaw again results mainly from 

the large coefficient increases. There is no whipsaw if z does not include a*.001, but there is 

whipsaw if o*.001 or y*.001 are substituted for a*.001, analogous to similar findings in table 2. 

Table 4 results are similar if o=x+a, which is OV simultaneity.  

          OVB occurs when the constant is deleted (and the slope does not go through the origin), 

which biases coefficients. Table 5 is the regression in table 1 without the constant. Coefficients 

increase, but the t-ratios decline and then plateau at about 45. Whipsaw occurs without the 

additional term in the function for z (e.g., b*.001 in table 2). The lack of constant prevents rx and 

rz from falling towards zero with extreme collinearity because the error term contains the 

constant. Whipsaw is completely due to the relatively modest declines in rxy/n and rzy/n since 

r2 does not change, and standard errors are similar to those in table 1. 

         OVB also occurs when the key IV has data errors or has an incorrect functional form, 

because the correct IV is an omitted variable. Simulations suggest that neither are likely to 

produce whipsaw. An example of data errors is the following exercise: x=a; error=b; 

digit=trunc(runiform(0,5)); errorx=0; errorx=errorx+error if digit=1; xx=x+errorx; z=x+r*K; 

                     

1 The reciprocal causation model contains two steps because one cannot in STATA simulate one-step 

reciprocal causation, where the IVs directly cause the DV, and the DV directly causes the IVs. 
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y=xx+z+c; regress y on x and z. An example of misspecified IVs is: x=a; xx=x^2; z=x+r*K; 

y=xx+z+c; regress y on x and z. Neither produces whipsaw. Consistent with table 2, there is 

whipsaw in both cases if z=a+xx*.001+r*K, but empirically that seems an unlikely situation. 

        These simulations, which are limited to the whipsaw test format, cover only a small portion 

of likely endogeneity scenarios, but they suggest that whipsaw is caused primarily by coefficient 

growth with more collinearity due to lesser declines of rxy/n and rzy/n compared to declines 

in exogenous regressions. Based on the algebraic examples and simulations, false negatives do 

not occur if the collinear IVs has a causal connection with the DV independent of the key IV. 

This causal connection can be very weak. Other false negative situations cannot be ruled out due 

to the unavailability of mathematical proofs. If there is whipsaw, however, there must be 

endogeneity because of Equation 3. 

4. EMPIRICAL EXAMPLES OF THE WHIPSAW EFFECT AND WHIPSAW TEST.           

For reasons given earlier, I use the exponent method to create collinearity with empirical 

examples, using an exponent of 1.02. Correlation between the key IV and the collinear IV are 

almost always larger than .99999 in the examples. The exponent method cannot be used with 

dummy variables, and adjustments must be made if the key IV has negative values (see footnote 

3). The standard for detecting endogeneity with the whipsaw test is whether t-ratios fail to 

decline (that is, increase or reach a plateau) with more extreme collinearity. A convenient 

procedure is to conduct the test with the key IV and its square, and then conduct it with the key 

IV and the key IV with a 1.02 exponent. Exogeneity is indicated if t-ratios (averaging the two) in 

the latter are not smaller than with an exponent of two. This leads to ambiguous results when the 

t-ratios are slightly smaller using the 1.02 exponent, which may indicate either plateauing or a 
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decline towards zero. Hence, an additional test is conducted with a smaller exponent (here 

1.0001) to determine whether there is plateauing. That is almost always the case in the empirical 

examples (I mention this issue only when t-ratios decline). In addition, a rule-of-thumb is that 

when t-ratios are less than one, endogeneity is likely inconsequential, unless the sample is small. 

Usual significance test criteria are irrelevant because the null is different; t-ratios below 1.95 do 

not mean that endogeneity is unlikely. If the key IV is a control variable, the danger of 

coefficient bias for IVs of interest caused by endogeneity is attenuated because it depends on the 

correlation between the IV of interest and the control. Thus, the rule of thumb is less restrictive, 

and I suggest a t-ratio of two.2  

4.1. Adding Quadratic Terms 

Innumerable regression studies enter an IV and its square, which are highly correlated.  A 

random variable with a normal distribution, standard deviation of one, is correlated .9976 with its 

square. Wooldridge’s (2021) use of empirical exercises provides a convenient large sample of 

regressions to illustrate this. OVB is likely because the regressions contain few IVs. Twenty-nine 

exercises contain 37 pairs of linear and quadratic IVs (table 6). Whipsaw and endogeneity are 

likely because t-ratios are similar for the two variables, and coefficients have opposite signs. T-

ratios are below one in just one case, and they average less than two in only two more cases. The 

common explanation for the pattern in table 6 is a curvilinear relationship, but table 7 shows that 

                     

2 The PcGets procedure usually uses a t-ratio of two when determining whether an INV should be 

dropped (see Krolzig and Hendry, 2001). 
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this can be only part of the explanation. Correlations between the two IVs increase to about 

.99999 when substituting IVs to a power of 1.02 for the quadratic IVs. The coefficients always 

increase greatly with more extreme collinearity. The t-ratios for IV1.02 are about the same as 

those for IV2, rather than decline towards zero. In all these regressions the sum of squares of 

residuals changes very little with more collinearity (not shown), which suggests that endogeneity 

is due to OVB and OV simultaneity. 

4.2. Unit Trends in Panel Regressions 

Another useful way to show many examples of whipsaw is to study unit time trends in a time-

series cross-section regression. Researchers often use these trends as crude controls for 

unobserved variables, in addition to unit and time effects. The trends control for unobserved 

variables that in the aggregate have a linear impact on the DV net of other IVs. What the 

unobserved variables are is unknown; so whether they are endogenous is unknown. Endogenous 

trends bias results for IVs of interest if the trend coefficients are biased, and the trends are 

correlated with the IVs. 

           In table 8 the whipsaw test explores whether state trends are endogenous when state 

alcohol consumption is regressed on state trends and control variables (state effects, year effects, 

lagged DV, and age groups). When adding quadratic trends (Panel A), the coefficients on the 

trends and quadratic trends have opposite signs, and their t-ratios are similar, which further 

illustrates the bias seen in table 6. The whipsaw test with trends and trends to the 1.02 power 

(Panel B) strongly indicates endogeneity. The coefficients are much larger than in Panel A, and 

the t-ratios are larger except for five states. This whipsaw effect with alcohol consumption is 

unusually large. Using other DVs, I generally find lesser effects; t-ratios vary from state to state 
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and are usually below two. I studied 37 DVs, a convenience sample. The greatest number of 

significant trends to the 1.02 power besides table 8 occur when DVs are crime rates and real 

welfare payments, and the least is prison population. The reason for these differences is 

unknown. The bottom line is that the researchers do not know whether trends are endogenous 

and should test for it. 

4.3. Lagged Independent Variables and the Granger Test 

The Granger test tests whether a key IV causes the DV with a lag. The right side contains lags of 

the DV and the IV of interest, and if a lag is significant, it “causes” the DV with a lag. For an 

empirical example, I conduct panel regressions with state per capita real personal income (RPI) 

and state per capita employment (EMP), selected because they are important economic 

indicators, and endogeneity seems likely. Simply regressing RPI on EMP, and vice versa, 

produces large t-ratios (coef.=.13, t=6.20 when RPI is DV, and .03 and 4.27 when EMP is DV, 

using the controls listed in table 9).  

        Table 9 illustrates the whipsaw test, as well as the effects of collinearity between IV lags. 

The correlation between RPI and its lag is .996, and the figure for EMP is .991. Using the 

Granger test, coefficients and t-ratios are similar for the two lags, but with opposite signs, which 

suggests whipsawing as in table 6. The whipsaw test, using lags taken to the 1.02 power, strongly 

suggests endogeneity because the coefficients and t-ratios increase with more collinearity, and 

the t-ratios are greater than one. As discussed earlier, this apparent causal relationship backwards 

in time is due to omitted variables. Table 10 is the same as table 9 but with differenced variables, 

and the pattern is similar to table 9 for the first lag, but there is no whipsaw for the second lag 

when the DV is EMP, consistent with the Granger test. 
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          The main reason for whipsaw is the same as in the simulations: rxy declines much less 

then rx
2 and (not shown) rzy declines much less then rz

2 (table 11). 

4.4. Testing For Endogeneity When Using Instruments.  

There are two reasons to use the whipsaw test when using instrumental variables: to suggest 

whether the suspected endogenous IV actually is endogenous (table 12) and to test whether the 

instrument is exogenous (table 13). I use the convenient examples in Wooldridge (2021), 

Chapters 16 and 17, excluding dummy variable instruments.3 A benefit of the whipsaw test for 

endogeneity of instrumented IVs is that it does not use instrumental variables, whose exogeneity 

may be suspect, as in the Housman (1978) test. The drawback is possible, but unlikely, false 

negatives. Table 12 contains 10 instrumented variables (excluding duplicates), and the whipsaw 

test suggests that all but two are endogenous, justifying the use of the instruments. The results for 

Example 16.7 are suspect because there are only 34 observations. 

                     

3 In four cases the INVs tested for endogeneity have negative values, which become positive 

when squared and become missing variables when taken to a fractional power. When the INV is 

differenced, the undifferenced version is taken to the 2 or 1.02 power, and then differenced (table 

12, 16.5#1). In other cases negative values of the INV are changed to positive, the INV is 

squared or taken to the 1.02 power, then signs are changed to negative whenever the INV is 

negative (table 13, 16.7). The salient feature of the collinear INV is its high correlation with the 

key INV, which these procedures accomplish. 
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        The whipsaw test suggests that 9 of the 20 instruments are endogenous (table 13), although 

example 16.7 is suspect due to small sample size. As for example 15.6, Wooldridge (2021, p. 

515) finds the results puzzling perhaps because the instrument KWW (“knowledge of the world 

of work”) is endogenous. 

5.  CONCLUSION  

Granger (1969) believes “there is little use in the practice of attempting to discuss causality 

without introducing time.”  I attempt to refute him. He also states that textbook approaches can 

make unrealistic assumptions, and one should not look on strange results as anomalies to be 

ignored, but as opportunities to develop new procedures (Granger 2012). Strange results - the 

whipsaw effect - occur when combining collinearity and endogeneity. With increasing 

collinearity, t-ratios rarely decline towards zero, and coefficients switch to opposite signs and 

increase to unrealistic levels. To test for endogeneity of an IV, I create a second IV highly 

collinear with the first. If whipsaw occurs, there is endogeneity. False negatives are possible, but 

unlikely. It is possible to distinguish between OMV and simultaneity (except simultaneity 

through an omitted variable) because simultaneity causes regression errors to decline. In the 

empirical examples, the regression errors decline only modestly; so the whipsaw effect is mainly 

due to OMV and simultaneity through omitted variables. Apparently, it is impossible to 

distinguish between these two. I illustrate whipsaw with algebraic models of endogeneity, 

simulations, and empirical examples. Perhaps the most useful application of the whipsaw test is 

testing the exogeneity assumptions behind instrumental variables and other strategies to deal 

with endogeneity. I also caution against using an IV and its square and against using successive 

IV lags when they are correlated. 
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Table 1. Regression Simulations Without Endogeneity 

     K   x&z     x       x    z      z     r2       1- 2 

10 .13      .98      .016     .98     .0019  36112    .98 

  1 .77      .97      .025   1.01     .019  36112    .41 

    .1 .997      .86      .19   1.11     .19  36112    .0068  

    .01 .99997     -.16    1.93   2.14   1.93  36112    .000069 

    .001 .9999996 -10.38  19.34 12.35 19.34  36112    .00000072 

Elements of Coefficients 

     K      rxy/n       x
2/n        rzy/n                             rz

2/n    x z) 

10 1.35  1.38  1.35                   1.38       -.0000040 

  1   .55    .57    .98                    .97       -.00038 

    .1   .0083    .0096    .011                      .0097       -.037 

    .01  -.000015    .000097    .00021                  .000097     -3.74 

    .001  -.000010    .00000097    .000012                   .00000097 -374 

x=a; z=x+w*K; y=x+z+b; regress y on x and z

rxy, rx
2, rzy, and rz

2 x z) 

is from x rxy x
2. The seed is 1313579. 
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Table 2. Reverse Causation  

  K=    x&z      x       x       z     z  r2      1- 2 

10 .19       .39    .0050        -.000   .0009  8876 .96 

  1 .886       .39    .011       -.002   .0094  8876 .21 

   .1 .9990       .49    .095       -.10    .094  8875 .0027 

   .01 .999986     9.34    .936    - 8.94   .935  8795 .000028 

   .001 .999999 471  4.988 -471 4.999  4691 .00000048 

Elements of Coefficients 

  K=   rxy/n     rx
2/n  rzy/n     rz

2/n     x z) 

10  1.36 3.50  -.014 99.78      -.00000091 

  1   .30   .78    -.0022   1.00      -.000089 

   .1   .0048    .0099  -.0010     .010      -.0089 

   .01   .00094   .00010     -.00090     .00010      -.87 

   .001   .00090    .0000019  -.00089     .0000019  -24 

y=a; x=y+b; z=x+b*.001+w*K; regress y on x and z. See notes to table 1. 
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Table 3.  Reciprocal Causation 

 K =   x&z      x       x        z     z    r2     1- 2 

10 .43        .54    .0033        -.0018    .0014  18641 .82 

  1 .978        .56    .014       -.017    .014  18642 .043 

   .1 .9998        .54    .14        .0034     .14  18644 .00046 

    .01 .999998   -16  1.35    17  1.34  18362 .0000047 

    .001 .9999999 -656  4.82  656  4.82    6536 .00000012 

Elements of Coefficients 

    K    rxy/n      rx
2/n    rzy/n      rz

2/n     x z) 

10  9.51 17 -.18 99     -.0000019 

  1   .52     .95 -.016     .99     -.00019 

   .1   .0053     .0098  .000034     .0099     -.019 

   .01  -.0016     .00010  .0017     .00010   -1.83 

   .001  -.0018     .0000028  .0019     .0000028 -23 

xx=a; zz=b; y=xx+zz+c; x=xx+y+d;  z=x+y*.001+w*K; regress y on x and z. See notes 

to table 1. 
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Table 4. Omitted Variable Bias 

    K     x&z    x       x      z     z      r2        1- 2 

10 .24      1.71    .0047     1.00   .0011 11516  .94 

 1 .92      1.71    .012     1.00   .011 11516  .15 

    .1 .991      1.60    .11     1.11   .11 11514  .0018 

    .01 .99991     -9.98  1.08   13 1.08 11382  .000018 

    .001 .9999998 -542  4.99 545 4.99   5257  .00000016 

Elements of Coefficients 

     K   rxy/n     rx
2/n       rzy/n       rz

2/n   x z) 

10 8.80 5.14    96   96     -.0000012 

  1 1.39   .81        .97       .97     -.00012 

    .1   .015   .0096        .011       .0097     -.012 

    .01  -.00097   .000098        .0012       .000098   -1.17 

    .001  -.0011   .0000021        .0012       .0000021 -25 

x=o+a; [o=omitted variable]; z=x+a*.001+w*K; y=x+z+o; regress y on x and z. 

See notes to table 1. The RESET test is negative. 
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Table 5. Regressions Without Constants 

   K     x&z       x       x       z     z     r2    1- 2 

10  .13      1.33      .015      1.06     .003 41948 .98 

  1  .77        .78         .020      1.61     .013 41948 .41 

    .1  .997     -4.68      .15      7.06     .13 41948 .0068 

    .01  .99997    -59    1.36    67   1.34 41948 .000069 

    .001  .9999996 -605  13.53  607 13.42 41948 .00000072 

  Elements of Coefficients 

   K   rxy/n    rx
2/n      rzy/n     rz

2/n     x z) 

10  2.57 1.94   247 233      - .000020 

  1    .46   .59       3.74     3.33       -.00036 

    .1   -.090   .019         .16       .023       -.0020 

    .01   -.014   .00023         .014       .00023     -1.82 

    .001   -.0014   .0000023         .0014       .0000023 -180 

These regressions are the same as table 1, but without constants. Constants are 

highly significant in table 1 (not shown). 
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Table 6. Wooldridge’s Uses of IVs and Their Squares 

Pg.   Ex.        DV           IV               IV              IV2 

         Coef     t         Coef    t 

189     - wage  experience        .298  7.27   -.0061 6.78 

190   6.2 ln(price)  rooms       -.545  3.24    .062 4.86 

193   6.3 exam result  GPA     -1.629  3.39    .293 2.93 

  “    “ exam result  ACT score       -.128  1.30    .0045 2.08 

202   6.5 GPA  class size       -.0608  3.69    .00546 2.41 

211    - ln(salary)  Roe        .0215  1.61   -.00008 3.08  

  “    - r&d exp.  sales        .00030  2.14    .0000000070 1.89  

213    - Prate  totemp       -.00043  4.78    .0000000039 3.90  

227   7.5 ln(wage)  experience        .029  5.92   -.00058 5.43  

  “     “ ln(wage)  tenure        .032  4.63   -.00059 2.49  

235  7.10 ln(wage)  experience        .029  5.40   -.00058 4.91 

  “     “ ln(wage)  tenure        .032  4.65   -.00059 2.51 

240   - inlf.  experience        .039  6.50   -.00060 3.33 

251   - Sleep  age     -8.70    .78    .128   .96 

252   - SATscore  class size    19.30  5.04 -2.19 4.13 

265   8.1 ln(wage)  experience        .0268  5.22   -.00054 5.03 

  “    “ ln(wage)  tenure        .0291  4.19   -.00053 2.19 

268   8.3 arrests  sentence ln        .0178  1.76   -.00052 2.49 
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280   8.7 cigarettes  age        .771  4.81   -.0090 5.18 

285   8.8 inlf.  experience        .039  6.96   -.00060 3.23 

288   - smokes  age        .020  3.33   -.00026 4.33 

296   9.1 arrests  Pcnv        .553  3.58   -.730 4.68 

  “    “ arrests   prison time        .287  6.49   -.0296 7.66 

  “    “ arrests  income       -.0034  4.25    .0000072 2.81 

355 10.8 fertility  time     -2.531  6.50    .0196 3.95 

428 13.1 # kids  age         .532  3.85   -.0058 3.71 

430 13.2 ln(wage)  experience         .0296  8.29   -.00040 5.15 

472 14.4 ln(wage)  experience         .106  6.80   -.0047 6.85  

508 15.4 ln(wage)  experience         .107  4.89   -.0022 6.64 

511 15.5 ln(wage)  experience         .044  3.29   -.00090 2.24 

544 16.5 ln(wage)  experience         .035  1.77   -.00071 1.55 

568 17.1 inlf.  experience         .206  6.42   -.0032 3.10 

576 17.2 work hours  experience   131.564  7.61 -1.864 3.47 

592 17.5 wageoffer  experience         .044  2.70   -.00086 1.96 

658   - particip.   Mrate         .239  5.69   -.087 2.02 

  “   - particip.  ln(emp)        -.112  8.00    .0057 6.33 

  “   - particip.  age         .0059  5.90   -.00007 3.50 

From Wooldridge (2021). I exclude examples that are very similar to earlier examples.  
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Table 7.  Comparing Results in Table 6 to Results When IVs Have a Smaller Power. 

Ex.    IV       IV alone                      IV and IV2                     IV and IV1.02 

               IV            IV2            IV            IV1.01 

    Coef       t .  Coef      t   Coef     t     Coef     t       Coef     t 

6.2 rooms    .255 13.74      -.545   3.29    .062   4.86    -40.331  5.13        38.353   5.16 

6.3 GPA   -.554   1.69    -1.629   3.39    .293    2.93    -67.412  2.74        64.741   2.72 

 “ ACT    .082    7.33      -.128   1.30    .005   2.08    -10.028  2.07          9.312   2.08 

6.5 Hsize   -.023   4.59      -.061   3.69    .005   2.41      -2.095  3.37          1.987   3.34 

7.5 exper    .005   2.85       .029   5.92   -.001   5.43       1.134  6.08         -1.045   6.06 

 “ tenure    .017   5.84       .032   4.63   -.001   2.49         .605  2.68           -.551   2.61 

7.6 exper    .005   2.85       .029   5.92   -.001   5.43       1.078  5.53           -.993   5.52 

 “ tenure    .015   5.37       .029   4.63   -.001   2.31         .545  2.45           -.496   2.38 

7.10 exper    .005   2.85       .029   5.89   -.001   5.40       1.129  6.05         -1.401   6.03 

  “ tenure    .017   5.85       .032   4.65   -.001   2.59         .613  2.71           -.559   2.64 

8.1 exper    .003   1.96       .027   5.22    .001   5.03       1.078    5.63           -.993   5.61 

  “ tenure    .016   4.56       .029   4.19    .001   2.19         .545  2.44           -.496   2.37 

8.3 avsen    .003     .59       .018   1.76   -.001   2.49         .618  2.04           -.577   2.05 

8.7 age   -.045   1.58       .771   4.81   -.009   5.18     40.351  5.31      - 36.734   5.32 

8.8 exper    .022 10.36       .039   6.96   -.001   3.23         .705  3.21           -.368   3.11 

9.1 Pcnv    .133   3.30       .553   3.58   -.730   4.68     24.116  4.54       -24.289   4.56 

 “ ptime   -.041   4.63      -.287   6.49   -.030   7.66     12.964  8.89       -12.400   8.93 
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 “ Inc   -.001   4.37      -.003   4.25    .000   2.81        -.113  3.41            .099   3.37 

10.8 time -1.150   6.12    -2.531   6.50    .020   3.95    -64.514  5.27        58.119   5.18 

13.1 age   . 020   2.40       .532   3.85   -.006   3.71     25.617  3.73       -23.207     3.73 

13.2 exper    .012 11.27       .030   8.29   -.000   5.15         .812  5.91           -.740   5.82 

14.4 exper    .033   2.98       .106   6.88   -.005   6.85       3.506  7.78         -3.274   7.71 

15.4 exper    .062   3.16       .107   4.89   -.002   6.64       2.140  6.07         -1.949   6.09 

15.5 exper     .015   3.89       .044   3.29   -.001   2.24       1.476  2.79         -1.359   2.76 

16.5 exper     .010   1.23       .035   1.77   -.001   1.55       1.209  2.07         -1.111   2.06 

17.1 exper     .120   8.79       .206   6.42   -.003   3.10       3.940  3.06         -3.569   2.97 

17.2 exper 76.779 11.69 131.564   7.61 -1.864   3.47 2424.730  3.58  - 2189.349   3.47 

17.5 exper     .015   2.96       .044   2.70   -.001   1.96        1.428  2.46         -1.313   2.44 

See notes to table 6. Only examples with accompanying data sets are included.  In example 15.5 lowering the 

exponent to 1.0001 led to t-ratios of .83, indicating exogeneity.  
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Table 8. Regressing Alcohol Consumption on  State Specific Trends  

    A. Trend & Trend Squared  B. Trend & Trend to 1.02 Power 

        Trend          Trend2        Trend        Trend1.02 

  Coef    t   Coef    t  Coef     t   Coef      t 

Alabama*        -.007 3.59 .00013 4.32 .578 10.84 -.533 10.84 

Alaska#      -.021 7.58 .00027 6.56 .332   6.57 -.311   6.69 

Arizona        -.007 4.57 .00008 3.25 .680 11.79 -.630 11.81 

Arkansas*       -.005 2.64 .00009 3.18 .685 12.08 -.632 12.07 

California#     -.013 9.09 .00018 7.60 .494   7.28 -.459   7.31 

Colorado       -.016 7.06 .00024 7.05 .346   9.31 -.321   9.37 

Connecticut*    -.010 5.44 .00016 5.25 .506 11.55 -.467 11.56 

Delaware       -.009 5.12 .00021 6.53 .391   9.49 -.359   9.47 

Florida        -.009 5.46 .00013 5.34 .562 10.18 -.521 10.17 

Georgia        -.006 2.88 .00005 1.65 .730 14.00 -.675 14.02 

Hawaii#         -.013 7.80 .00021 8.02 .471   7.87 -.436   7.92 

Idaho*          -.011 6.02 .00015 5.35 .540 10.06 -.501 10.06 

Illinois       -.009 5.82 .00013 5.09 .573 10.21 -.531 10.20 

Indiana*        -.007 3.88 .00013 4.46 .601 11.71 -.554 11.71 

Iowa*           -.010 5.26 .00010 6.44 .459 10.12 -.423 10.09 

Kansas*         -.008 4.50 .00014 5.06 .550 10.89 -.508 10.87 

Kentucky*       -.012 5.58 .00021 6.16 .401 11.45 -.371 11.44 
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Louisiana*      -.008 4.01 .00011 4.00 .615 12.07 -.568 12.04 

Maine*          -.016 6.23 .00028 6.66 .229 12.65 -.218 12.64 

Maryland       -.014 7.71 .00020 6.54 .419 10.04 -.390 10.11 

Massachusetts  -.011 5.51 .00017 5.08 .486 11.46 -.452 11.62 

Michigan       -.014 6.91 .00022 6.67 .378 10.13 -.350 10.15 

Minnesota*      -.013 5.30 .00021 5.63 .406 13.53 -.376 13.45 

Mississippi*    -.006 2.84 .00010 3.29 .636 12.10 -.587 11.06 

Missouri*       -.007 4.01 .00014 4.82 .567 12.34 -.523 12.29 

Montana*        -.014 6.85 .00027 7.34 .332   8.42 -.307   8.45 

Nebraska       -.009 4.79 .00013 4.50 .562 12.23 -.521 12.22 

Nevada*         -.016 11.59 .00021 9.75 .410   6.56 -.382   6.65 

New Hampshire  -.017 6.35 .00027 6.03 .250 14.79 -.233 14.71 

New Jersey*     -.009 5.70 .00015 5.55 .524 10.04 -.484 10.04 

New Mexico     -.011 5.88 .00016 5.06 .541 10.38 -.502 10.44 

New York#      -.016 8.24 .00024 8.11 .359   6.94 -.333   6.97 

North Carolina* -.009 4.55 .00016 5.27 .511 10.80 -.471 10.82 

North Dakota*   -.012 6.03 .00023 7.58 .385   8.55 -.356   8.50 

Ohio*           -.008 4.78 .00014 4.82 .563 11.53 -.520 11.53 

Oklahoma*       -.008 5.02 .00014 5.53 .567 10.61 -.523 10.60 

Oregon*         -.012 6.21 .00020 6.48 .443 10.08 -.410 10.05 

Pennsylvania*   -.008 5.24 .00016 5.93 .514   9.24 -.474   9.22 
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Rhode Island*   -.011 5.77 .00016 5.48 .504   9.47 -.467   9.46 

South Carolina -.006 2.71 .00008 2.29 .678 12.91 -.626 12.98 

South Dakota*   -.005 2.84 .00010 3.29 .631 12.64 -.582 12.59 

Tennessee*      -.010 5.06 .00018 6.06 .474 10.09 -.438 10.09 

Texas          -.008 4.83 .00010 4.28 .682 10.81 -.613 10.80 

Utah           -.009 6.54 .00010 5.15 .672   6.19 -.623   8.17 

Vermont        -.024 8.02 .00040 7.78    --    --    --     -- 

Virginia*       -.011 5.53 .00017 5.50 .509 11.95 -.471 11.98 

Washington     -.012 6.08 .00016 5.20 .521 11.67 -.484 11.66 

West Virginia*  -.009 4.56 .00016 4.95 .508 11.73 -.469 11.73 

Wisconsin      -.013 5.70 .00019 5.49 .431 12.28 -.400 12.24 

Wyoming #       -.016 8.00 .00027 7.87 .332   7.32 -.309   7.37 

These are two pooled time-series cross-section regressions, with annual state data for 

1970 to 2020. The DV is logged alcohol consumption per capita. There are 50 separate 

state-specific trends (which are zero except for the state, where they are a counter). 

Additional IVs are state and year effects, a lagged DV, and nine age categories (percent 

20-24 to 60-64) also logged. The regression is weighted by the square root of state 

population and is clustered by state. *The trend is not significant when entered alone, 

without a powered trend.  # The average t-ratio with trend2 is higher than the average 

with trend1.02.   -- Dropped by the regression program because of collinearity. The 

alcohol data are from https://www.niaaa.nih.gov/sites/default/files/pcyr1970-2021.txt. 
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The population data are from https://www2.census.gov/programs-

surveys/popest/datasets/  
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Table 9. Granger Test: Real Personal Income and Employment (Levels) 

A. DV=real personal income.    IV=employment. 

                  First IV lag             Second IV lag 

              Lag  Lag Exponent            Lag    Lag Exponent    

   Coef     t   Coef    t    Coef     t   Coef     t 

One lag         .05 2.83  

Granger         .40 6.69        -.37   6.03  

Whipsaw sqr.      -4.84 3.31       .42  3.56      3.75   2.75       -.33  3.00 

Whipsaw 1.02  -263.33 3.52 249.33  3.52  207.68   2.98 -196.65  2.98 

 

               B.  DV=employment.     IV=real personal income. 

                  First IV lag              Second IV lag 

             Lag  Lag Exponent             Lag   Lag Exponent 

   Coef     t    Coef    t        Coef     t    Coef    t   

One lag        .00   .98  

Granger        .05 2.95       -.06  3.46  

Whipsaw sqr.      -.21 1.37     .03 1.69       .17  1.25     -.05  1.66 

Whipsaw 1.02  -13.74 1.83 13.26 1.86   12.26  1.82 -11.84  1.82 

These are time series-cross section regressions with data for 50 states, years 1970-2020. 

Other IVs in all regressions are two DV lags, state and year effects, and nine age 
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categories (percent 20-24 to 60-64). RPI is per capita, and EMP is per 1000 capita. The 

continuous variables are logged. The regressions are clustered. The lag exponent is the 

lag squared (the Whipsaw sqr. line) or the lag taken to the 1.02 power (the Whipsaw 1.02 

line). Correlations between lagged IVs and their squares are about .99. The 

corresponding correlations for IVs taken to the 1.02 power are about .999999. Third lags 

are far from significant. RPI and EMP are I(1) and cointegrated. RPI data are from 

https://www.bea.gov/data/income-saving/personal-income-by-state    EMP data are from 

https://www.bea.gov/data/income-saving/personal-income-by-state.  
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Table 10. Granger Test: Real Personal Income and Employment (Differences) 

A. DV=real personal income.    IV=employment. 

                  First IV lag             Second IV lag 

              Lag  Lag Exponent            Lag    Lag Exponent    

   Coef     t   Coef    t    Coef     t   Coef     t 

One lag        .37 4.80     

Granger        .34 3.71        .10   1.28  

Whipsaw sqr.    -5.56 3.00       .47  3.20     3.38   1.89       -.26 1.81 

Whipsaw 1.02 -296.13 3.19 280.18  3.19 163.59   1.82 -154.50 1.82 

 

               B.  DV=employment.     IV=real personal income. 

                  First IV lag              Second IV lag 

             Lag  Lag Exponent             Lag   Lag Exponent 

   Coef     t    Coef    t        Coef     t    Coef    t   

One lag        .05 2.93  

Granger        .05 3.02        .00    .09      

Whipsaw sqr.      -.16 1.54     .04 1.99       .06    .63     -.01   .63 

Whipsaw 1.02  -11.42 2.27 11.03 2.29     2.53    .51   -2.43   .51 
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This is the same as table 9 except that the variables are differenced, and state dummies 

are dropped. The lagged IV2 is about .99 correlated with the lagged IV. The 

corresponding correlation for IVs taken to the 1.02 power is about .9999.  
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Table 11. Elements of Coefficients in Tables 9 and 10 

                         Regressions in table 9 (levels) 

DV=real personal income 

          First IV lag        Second IV lag 

     rxy        x
2      rxy         x

2 

exp=2   -.00084 .00017 .00068 .000015 

exp=1.02 -.000018 .000000069 .000015 .000000072 

DV = employment 

         First  IV lag        Second IV lag 

     rxy       x
2      rxy        x

2 

exp=2 -.0022 .010 .0019 .011 

exp=1.02 -.000058 .0000042 .000055 .0000045 

                        Regressions in table 10 (differences) 

DV = real personal income 

          First  IV lag         Second IV lag 

       rxy        x
2      rzy        rz

2 

exp=2 -.00083 .00015 .00052 .000016 

exp=1.02 -.000018 .000000060 .000010 .000000062 

   DV = employment 

          First  IV lag         Second IV lag 
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      rxy        x
2      rzy        rz

2 

exp=2 -.0018 .011 .00071 .012 

exp=1.02 -.000052 .0000046 .000012 .0000048 

 rx is the residual when regressing the particular IV on all other 

IVs.  
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Table 12. Test of Endogeneity of Instrumented Independent Variables 

Exam-

ple  

   DV Instrum- 

ented IV 

        Instrumented IV & IV2      Instrumented IV & IV1.02  

     Coef     t  Coef     t     Coef     t   Coef    t 

15.1 Lwage educ -.073   .69  .007 1.73   -7.408 1.56   7.005 1.59 

15.2 Lwage educ  .133 1.78 -.003   .90    3.245   .87  -2.962   .85 

15.3 Lbwght packs -.149 3.83  .047 1.69   -3.275 2.01   3.177 1.96 

15.5 Lwage educ -.078   .75  .007 1.80   -7.504 1.61   7.094 1.64 

15.6 Lwage IQ -.005   .60  .000 1.06     -.418 1.10     .377 1.11 

15.8 Lwage educ -.078   .75  .007 1.80   -7.504 1.61   7.094 1.64 

15.9 Kids educ   .120 1.27 -.010 2.68    8.957 2.53    -8.47 2.58 

16.5#1 hours   Lwage#  .370* 2.76 -.165* 3.04    9.250* 1.89  -9.099* 1.89 

16.5#2 Lwage hours   .000 4.00 -.000 4.95      .018 3.31    -.015 3.72 

16.6 inf  open -.520 2.09  .002 1.33 -18.222 1.66 16.303 1.64 

16.7 Gc r3# -.000   .04  .000   .10       .001   .01    -.001   .02 

The instrumented IV is suspected to be endogenous. There are two regressions in each line, with 

the instrumented IV and its squared and, second, with the instrumented IV and it taken to the 1.02 

power. Other IVs are not shown. The correlation between the IV and the IV taken to the 1.02 

power is .9999 or higher. Bold faced instrumented IV names are endogenous. L in a DV name 

means the DV is logged.  * Divided by 1000. # The IV has negatIVe values before adjustments (see 

note 10). 
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Table 13. Test of Exogeneity of Instruments. 

         Instrument & Its Square    Instrument & It to the 1.02 Power 

Ex. #     DV Instrument     Instrument    Instrument2     Instrument      Instrument1.02 

     Coef     t Coef     t    Coef    t     Coef    t 

15.1 Lwage fatheduc    -.080   1.94    .005 2.39     -3.469 2.52      3.441  2.52 

15.2 Lwage Sibs    -.047   3.07    .002 1.38       -.506   .86        .456    .81 

15.3 Lbwght cigprice    -.006     .67    .000   .77       -.321   .73        .287    .73 

15.5 Lwage motheduc     .003     .06   -.001   .39        .827   .48       -.790    .48 

  “  fatheduc    -.043   1.04    .002   .95     -1.834 1.19      1.717  1.19 

15.6 Lwage KWW    -.026   2.27    .000 2.74     -1.512 2.83      1.386  2.84 

15.8 Lwage motheduc     .001     .02   -.000   .03        .400   .22       -.375    .22 

  “  fatheduc    -.072   1.64    .004 1.93     -3.218 2.00      3.030  2.01 

  “  hueduc     .047     .62   -.001   .17        .564   .17        -.494    .16 

15.9 kids meduc     .015     .30   -.000   .21        .657   .39       -.639    .40 

  “  Feduc    -.016     .28    .001   .34        .668   .34       -.662    .35 

16.5#1 hours   exper 68.867   6.72   -.706 2.17  662.411 1.71 -574.722  1.59 

  “  expersq   2.602 10.13   -.001 5.71    64.236 6.84  - 54.827  6.70 

16.5#2 Lwage Age     .023     .47   -.000   .53      1.286   .52     -1.173    .52 

  “  kidslt6    -.035     .14    .005   .03        .565   .05      - .598    .05 

  “  nwifeinc     .011   1.38   -.000   .78        .400 1.11       -.362  1.09 
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16.6 inf  Lland   -4.563     .63    .346 1.00 -318.672   .95  300.723    .96 

16.7 Gc lag Lgc#   1.727     .14   -.063   .09 -142.122   .23  133.733    .23 

  “  lag Lgy#   9.031     .86   -.486   .88  607.142 1.20 -569.186   1.20 

  “  lag r3#   -.004   1.55    .001 1.97       -.174 1.76        .171  1.77 

See notes to table 12. Where more than one instrument is shown they are in the same regression, except 

that they are in separate regressions in 16.5#1 to avoid perfect collinearity. 

 

 


